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Appendix B

Error bars, autocorrelation, and batched

means

We make concrete various [CB, GS, Berg] ideas regarding autocorrelation of stationary
Markov processes, with the particular goal of placing error bars on sample means. We
focus on processes where the autocorrelation takes the form of a single exponential.
We define a particular toy-model process, the correlated-uniform Markov process,
which is exactly solvable. (This is in contrast to the typical Markov chain Monte
Carlo process: in the MCMC field, one resorts to experimental methods only for
systems which are not exactly solvable.) When a practitioner applies new methods
to an MCMC process which is itself under examination, it can be difficult to identify
computational problems which arise. Using this toy-model process, we elucidate
strengths and shortcomings of autocorrelation and its estimators, clearly separating
properties of the estimators themselves from the properties of the particular Markov
process. The policies developed herein will be used to design and analyze MCMC
experiments for the author’s doctoral dissertation.

B.1 Problem statement

The following problem occurs throughout Markov chain Monte Carlo (MCMC) ex-
periments. Let Xt be an identically distributed, but not necessarily independent,
Markov process; let µX and σ2

X be the common mean and variance, respectively. (We
will construct a specific process Yt with the same properties. We reserve the nota-
tion Xt for a general process with these properties.) Given a time-series realization
X0, . . . , XN−1, the sole desired expressed in this paper is to to estimate µX , with an
error bar on that estimate. The presence of correlations between the Xt’s make this
process more complicated than in the IID case.

The standard estimator for µX is the sample mean, XN . Given a time-series
realization X0, . . . , XN−1, we compute a single value of XN . Since the Xt’s are random
variables, XN is itself a random variable. When we conduct M such experiments, we
will get M different values of XN . (We will quantify below the dependence of the
variance, or error bar, of XN , upon the autocorrelation of the process Xt.) Suppose for
the sake of discussion that the autocorrelation is exponential: Corr(Xi, Xj) = η|i−j|

for some η ∈ [0, 1). Then η = 0 is the IID case, and higher η’s correspond to more
highly correlated processes. A few such realizations are shown in figure B.1.
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Figure B.1. Five realizations each of the correlated-uniform Markov process Yt with
η = 0.0, 0.9, 0.999.

For any process W1, . . . , WK , write mK(W ) for the sample mean and s2
K(W ) for

the sample variance, the unbiased estimator of Var(W ). Then:

• mN(Xt), which is XN , estimates µX . This is the sample mean, taken over N
samples.

• s2
N(Xt) estimates σ2

X . This is the sample variance, taken over N samples.

• mM(XN) estimates µXN
. This is also referred to as the sample mean; it is taken

over MN samples.

• s2
M(XN) uses MN data points to estimate σ2

XN
, which is the variance of the

sample mean.

• In the IID case, the true variance of the sample mean is σ2
XN

= σ2
X/N ; t2N (Xt)

= s2
N(Xt)/N is the naive estimator of the variance of the sample mean, using

N data points. It is an unbiased estimator only in the IID case.
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• u2
N(Xt) is the corrected estimator of σ2

XN
. The estimators t2N (Xt) and u2

N(Xt)

will be discussed graphically, numerically, and theoretically below. The esti-
mated integrated autocorrelation time τ̂int will be used to compute u2

N(Xt) from
t2N(Xt).

• Var(u2
N(Xt)) is the error of the error bar. It turns out that u2

N(Xt) is a rough
estimator for Var(XN ), and Var(u2

N(Xt)) increases with η. The very name
“error of the error bar” sounds overwrought; yet, it is a necessary consideration
in MCMC experiments, and must be thought through.

The processes Yt of figure B.1, to be defined explicity in section B.4, have µY = 1/2
and σ2

Y = 1/12, regardless of the autocorrelation exponent η. (Note that
√

1/12 ≈
0.2887.) We observe the following behavior from the aforementioned estimators. (See
figures B.7 through B.10 starting on page 150, and table B.2 on page 153.)

• For all η, Y N is unbiased for µY . Its uncertainty widens visibly with autocor-
relation exponent η. This uncertainty is the quantity of interest.

• Quantitatively, sM(Y N) gives a good idea of this increasing uncertainty. How-
ever, sM(Y N) requires M experiments, where M may be unacceptably large. If
we were always willing to conduct such a large number of experiments, it would
not be necessary to write this paper. We wish to estimate the variance of the
sample mean using only one experiment Y0, . . . , YN−1. This is the rub.

• The corrected estimator u2
N(Yt) corresponds roughly with sM(Y N ), and more-

over is computed from a single experiment Y0, . . . , YN−1. The roughness of the
approximation of the error bar is acceptable: it is only an error bar.

To summarize, s2
M(XN ) is a multi-experiment estimator for the variance of the

sample mean; u2
N(Xt) is a single-experiment estimator. The former is of higher quality,

but is more expensive to obtain; the latter carries its own uncertainty which worsens
as the autocorrelation η increases.

Having motivated the problem, we now develop the notation and theory to make
all of these ideas precise.

B.2 Autocovariance and autocorrelation

Definition B.2.1. A Markov process Xt, t = 0, 1, 2, . . ., is stationary if the Xt’s have
a common mean µX = E[Xt] and variance σ2

X = Var(Xt).
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Definition B.2.2. Let Xt be a stationary Markov process with E[Xt] = µX and
Var(Xt) = σ2

X . The autocovariance and autocorrelation of Xt, respectively, are

C(t) = Cov(X0, Xt) = E[X0Xt] − E[X0]E[Xt] = E[X0Xt] − µ2
X

c(t) = Corr(X0, Xt) =
E[X0Xt] − E[X0]E[Xt]

σX0σX
=

E[X0Xt] − µ2
X

σ2
X

.

Remark B.2.3. In the literature, what we call the autocovariance is often referred
to as autocorrelation. This incorrect and misleading terminology is, sadly, quite
widespread.

Remark B.2.4. Recall that, as with all correlations, the autocorrelation takes values
between −1 and 1.

B.3 The IID uniform process

Here we recall familiar [CB, GS] facts about random numbers U which are uniformly
distributed on a closed interval [a, b]. These will be used as building blocks in section
B.4. Writing the probability density function of U as fU(x), we have

fU(x) =
1

b − a
· 1[a,b](x) µU =

1

b − a

∫ b

a

x dx =
a + b

2

µ2
U + σ2

U = E[U2] =
1

b − a

∫ b

a

x2 dx =
a2 + ab + b2

3
σ2

U =
(b − a)2

12
.

Now consider an IID sequence {Ui} of such random variables, indexed by the integers.
We develop a particularly phrased formula which will simplify the calculations in
section B.4. Note that if X1, X2 are IID with common mean µX and variance σ2

X ,
then E[X2

1 ] = µ2
X +σ2

X whereas E[X1X2] = µ2
X . For a sequence of IID Xi’s, including

our particular uniform Ui’s, this means

E[XiXj ] = µ2
X + δijσ

2
X . (B.3.1)

B.4 The correlated-uniform Markov process

This paper addresses correlated Markov processes, focusing in particular on those with
exponential autocorrelation. Here we construct a simple process for which the mean,
variance, and autocorrelation are exactly solvable. In particular, the autocorrelation
will be controlled by a parameter η ∈ [0, 1], while the mean and variance will be the
same as for IID U(0, 1).
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Definition B.4.1. Let U be uniformly distributed on [a, b] as in the previous section,
where a < b are left variable for the moment. Let 0 ≤ η ≤ 1 and a < b. The
correlated-uniform Markov process Yt is defined by Y0 ∼ U(a, b), and for t ≥ 1,

Yt = ηYt−1 + (1 − η)Ut = ηtU0 + (1 − η)

t
∑

i=1

ηt−iUi (B.4.2)

where the first equality is a definition and the second equality follows by an easy
induction argument.

Remark. Note that η = 0 is the IID case from the previous section; η = 1 would
give a constant process with zero variance. The η parameter is the control knob with
which we specify the autocorrelation of the process, as will be made precise in section
B.5.

Definition B.4.3. Closely related to this is the correlated-uniform stationary Markov

process (or asymptotic process)

Yt = (1 − η)

t
∑

i=−∞

ηt−iUi. (B.4.4)

In practice, we will run the original process for a number of time steps s until
ηs ≈ 0, such that the ηsU0 term of equation (B.4.2) dies out, then consider the values
of the process only from that time forward. In that regime, the process of definition
B.4.3 is an approximation to that of definition B.4.1, but it is easier to manipulate
algebraically.

We seek a, b such that the mean and variance of Yt do not depend on η. The mean
is immediate:

E[Yt] = (1 − η)
t
∑

i=−∞

ηt−i
E[Ui] =

a + b

2
.

The variance Var(Yt) is a special case of the covariance Cov(Yt, Yt+k), which will be
needed below. Equation (B.3.1) and expressions for geometric sums give us

E[YtYt+k] = (1 − η)2η2t+k
t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j
E[UiUj ]

= (1 − η)2η2t+k
t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j (µ2
U + δijσ

2
U )

= µ2
U(1 − η)2η2t+k

t
∑

i=−∞

η−i
t+k
∑

j=−∞

η−j + σ2
U(1 − η)2η2t+k

t
∑

j=−∞

η−2j

= µ2
U + σ2

U ηk

(

1 − η

1 + η

)

.
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Then

Var(Yt) = σ2
U

(

1 − η

1 + η

)

=
(b − a)2

12

(

1 − η

1 + η

)

.
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Figure B.2. Realizations of the correlated-uniform Markov process Yt with η =
0.0, 0.5, 0.9. Burn-in iterates are included.

Now we may solve for a and b such that µU and σU are the same as for IID U(0, 1),
namely, 1/2 and 1/12 respectively. Solving the pair of equations

a + b

2
=

1

2
and

(b − a)2

12

(

1 − η

1 + η

)

=
1

12
,

we obtain

a =
1

2

(

1 −
√

1 + η

1 − η

)

and b =
1

2

(

1 +

√

1 + η

1 − η

)

. (B.4.5)

Note in particular that for η = 0, the IID case, we recover a = 0, b = 1 as expected.
Figure B.2 shows some realizations for η = 0.0, 0.5, 0.9. For η = 0.9, correlations
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are clearly visible. Also note that there is a burn-in time required for the process to
forget its initial state Y0. In this figure, the asymptotic formula of definition B.4.3
appears valid for t > 50 or so, at which point ηt = 0.950 ≈ 0.005 ≈ 0. This burn-in
phenomenon is discussed in more detail in section B.8.

The following is pseudocode (technically, it is Python code, which is largely the
same thing) for displaying N steps of Yt, given the correlation-control parameter η
and the number Ntherm of burn-in iterates to be discarded:

s = sqrt((1+eta)/(1-eta)); a = 0.5 * (1 - s); b = 0.5 * (1 + s)

Y = random.uniform(a, b) # Burn-in iterates

for k in range(0, Ntherm):

U = random.uniform(a, b)

Y = eta * Y + (1-eta) * U

for k in range(0, N): # Iterates to be displayed

U = random.uniform(a, b)

Y = eta * Y + (1-eta) * U

print Y

B.5 Statistics of the correlated-uniform Markov process

We now write all statistics of the correlated-uniform Markov process Yt in terms of
η. With a and b in terms of η (equation (B.4.5)), we have

µU =
a + b

2
=

1

2
, σ2

U =
(b − a)2

12
=

1

12

(

1 + η

1 − η

)

,

E[Yt] = µY =
a + b

2
=

1

2
, Var(Yt) = σ2

Y =
(b − a)2

12

(

1 − η

1 + η

)

=
1

12
;

E[YtYt+k] = µ2
U + σ2

Uηk

(

1 − η

1 + η

)

=
1

4
+

ηk

12
,

Cov(Yt, Yt+k) = E[YtYt+k] − E[Yt]E[Yt+k] =
ηk

12
,

Corr(Yt, Yt+k) =
Cov(Yt, Yt+k)

σY σYt+k

= ηk.

The remaining step needed to completely specify the correlated-uniform Markov
process is to write down the PDF of Yt. This could be done using convolutions, since
Yt is a weighted sum (weighted by powers of η) of IID uniform random variables. The
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Figure B.3. Histograms of the correlated-uniform Markov process Yt with η =
0.0, 0.5, 0.9: 106 iterates, bins of 0.1 from −0.7 to 1.7. Burn-in iterates have been
discarded.

algebra is messy, though, and an expression for the PDF is not needed in this work. It
is sufficient to point out the following: (i) For η = 0, the density is uniform on [0, 1].
(ii) For η close to 1, which is the case of interest in this work, the density closely
resembles a normal with mean 1/2 and variance 1/12. The support is compact, so the
density cannot be Gaussian, but the support is wide enough to include substantial
tail mass. See figure B.3 for empirical histograms.

B.6 The variance of the sample mean

When we use the data from an MCMC simulation to compute the sample mean of a
random variable, the next order of business is to place an error bar on that sample
mean.

As before, let Xt be a stationary Markov process with common mean µX , variance
σX , and autocorrelation Corr(Xt, Xt+k) = ηk. Given X0, . . . , XN−1, the sample mean
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XN is an unbiased estimator of µX :

XN =
1

N

N−1
∑

i=0

Xi.

By linearity of expectation, E[XN ] = µX . To find the variance of XN , we first need

E[XN
2
]. This is

E[XN
2
] =

1

N2

N−1
∑

i=0

N−1
∑

j=0

E[XiXj ].

Since

Corr(Xi, Xj) = η|i−j| =
E[Xi, Xj] − µ2

X

σ2
X

,

we have

E[XiXj ] = µ2
X + σ2

Xη|i−j|. (B.6.1)

Then

E[XN
2
] =

1

N2

N−1
∑

i=0

N−1
∑

j=0

(µ2
X + σ2

Xη|i−j|) = µ2
X +

σ2
X

N2

N−1
∑

i=0

N−1
∑

j=0

η|i−j|

= µ2
X +

σ2
X

N2

[

N−1
∑

i=0

1 +

N−2
∑

i=0

η−i
N−1
∑

j=i+1

ηj +

N−1
∑

i=1

ηi
i−1
∑

j=0

η−j

]

.

Applying geometric-sum formulas and several lines of algebra, we get

E[XN
2
] = µ2

X +
σ2

X

N
+

2σ2
Xη

N2(1 − η)

[

(N − 1) −
(

η − ηN

1 − η

)]

.

With N ≈ N − 1 we have

E[XN
2
] ≈ µ2

X +
σ2

X

N

(

1 + η

1 − η

)

− 2σ2
Xη2

N2(1 − η)2
(1 − ηN−1).

With ηN ≈ 0 and a bit more algebra we have

E[XN
2
] ≈ µ2

X +
σ2

X

N

(

1 + η

1 − η

)

and Var(XN) ≈ σ2
X

N

(

1 + η

1 − η

)

. (B.6.2)

Recall that for the IID case (η = 0) we have Var(XN) = σ2
X/N . This expression

recovers that; furthermore, correlations enlarge the error bar on the sample mean.
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B.7 Estimates of autocorrelation

Throughout this section, let Xt be a stationary Markov process with E[Xt] = µX ,
Var(Xt) = σ2

X , and Corr(Xt, Xt+k) = ηk. (Without loss of generality, take k ≥ 0.)
The simple correlated-uniform Markov process of section B.4 is one example of this;
moreover, an MCMC process on a finite state space may take this form. (As described
in [Berg], η is related to the second dominant eigenvalue of the transition matrix of
the Markov process. If the third dominant eigenvalue is comparable with the second,
then the autocorrelation will not take the simple exponential form described here.)

Remark B.7.1. In the literature, one more often sees Corr(X0, Xt) = exp(−t/τexp).
Then τexp and η are put into one-to-one correspondence by

τexp = −1/ log η and η = exp(−1/τexp).

For the correlated-uniform process, the autocorrelation is already known; for a
general MCMC process, one wishes to estimate η (or τexp) from realization data.
Recall that

Corr(Xt, Xt+k) =
E[XtXt+k] − E[Xt]E[Xt+k]

σXt
σXt+k

=
E[X0Xk] − µ2

X

σ2
X

(B.7.2)

where the second equality holds by the stationarity of the process, and that we always
have

−1 ≤ Corr(Xt, Xt+k) ≤ 1. (B.7.3)

(This holds for the correlation of any pair of random variables.) Also recall that

σ2
X = E[X2

t ] − E[Xt]
2. (B.7.4)

Recall as well [CB] that, for M realizations X
(0)
t , . . . , X

(M−1)
t of Xt, the unbiased

estimator for the variance of Xt is

s2
Xt

=
1

M − 1





M−1
∑

i=0

(X
(i)
t )2 − 1

M

(

M−1
∑

i=0

X
(i)
t

)2


 . (B.7.5)

Definition B.7.6. Fix t and k. The multi-realization estimator of the autocorre-
lation Corr(Xt, Xt+k), requiring M realizations X

(0)
t , . . .X

(M−1)
t of the process, is a

straightforward combination of equations (B.7.2), (B.7.4), and (B.7.5). Namely,

ĉm(t, k) =

1
M

∑M−1
i=0

(

X
(i)
t X

(i)
t+k

)

− 1
M2

(

∑M−1
i=0 X

(i)
t

)(

∑M−1
j=0 X

(j)
t+k

)

1
M−1

[

∑M−1
i=0 (X

(i)
t )2 −

“

PM−1
i=0 X

(i)
t

”2

M

]1/2 [

∑M−1
j=0 (X

(j)
t+k)

2 −
“

PM−1
j=0 X

(j)
t+k

”2

M

]1/2
.
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Remark. Since the process is stationary, one may be tempted to reuse the Xt variance
estimator for Xt+k — after all, they estimate the same quantity σ2

X . In practice,
however, doing so tends to produce autocorrelation estimates which fall (quite far)
outside the range [−1, 1], violating inequality B.7.3. That is, the second equality in
equation (B.7.2) holds theoretically but not at the estimator level. This same remark
holds for the sliding-window estimator, to be defined next.

The difficulty with the multi-realization estimator is that realizations Xt can be
expensive to compute. Rather than running M processes from t = 0 up to some N ,
which takes O(MN) process-generation time, perhaps we can (carefully) use the sta-
tionarity of the process, estimating the autocorrelation using only a single realization.
This will take only O(N) process-generation time.

Definition B.7.7. Given a single realization X0, . . . , XN−1, take k from 0, 1, 2, . . . , N−
2. The sliding-window estimator of the autocorrelation Corr(X0, Xk), is

ĉ(k) =

1
N−k

∑N−k−1
i=0 (XiXi+k) − 1

(N−k)2

(

∑N−k−1
i=0 Xi

)(

∑N−k−1
j=0 Xj+k

)

(

1
N−k−1

)

[

∑N−k−1
i=0 X2

i − (
PN−k−1

i=0 Xi)
2

N−k

]1/2 [
∑N−k−1

j=0 X2
j+k −

(
PN−k−1

j=0 Xj+k)
2

N−k

]1/2
.

(B.7.8)

This formula is perhaps intimidating, but is made quite simple with the aid of the
example below, wherein N = 10 and k − 2. Namely:

• We consider all pairs separated by k time steps: X0Xk, X1Xk+1, . . . , XN−k−1XN−1.
There are N − k such pairs.

• The first elements in each pair form a window from X0 to XN−k−1.

• The second elements in each pair form a window from Xk to XN−1.

• We estimate the mean and variance of X0 by the sample mean and sample
variance over the first window.

• We estimate the mean and variance of Xk by the sample mean and sample
variance over the second window.

• We estimate the cross-moment E[XtXt+k] by the sample mean over pair prod-
ucts.

Example B.7.9. ⊲ There are N = 10 samples, X0 through X9:

X0 X1 X2 X3 X4 X5 X6 X7 X8 X9
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Picking k = 2, there are two windows of length N − k = 8:

X0 X1 X2 X3 X4 X5 X6 X7

X2 X3 X4 X5 X6 X7 X8 X9

Equation (B.7.8) has five distinct sums: the sum of X0 through X7, the sum of squares
of X0 through X7, the sum of X2 through X9, the sum of squares of X2 through X9,
and the cross sum X0X2 + . . . + X7X9. ⊳
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Figure B.4. Autocorrelation and estimators thereof for Yt with η = 0.9. Burn-in
iterates have been discarded. The second plot zooms in on the first 50 samples of the
first plot.

Remark B.7.10. One would hope that ĉ(t) is an unbiased estimator of c(t). Finding
its expectation using the definition is intimidating: we have a ratio of products of sums
of correlated random variables. Taking an experimental approach instead, making
multiple plots of the form of figure B.4, one finds that ĉ(t) does in fact fractionally
underestimate c(t). This affects the estimated integrated autocorrelation time, as
discussed in remark B.9.2.

This estimator has the benefit of making use of all the data in a single realization.
Its drawback is that, for larger k, the sample size N − k is small. Thus, the error in
the estimator increases for larger k.

Figure B.4 compares estimators against the true value c(k) = Corr(X0, Xk) = ηk

for η = 0.9. Here, N = 1000 time steps have been used; M = 1000 realizations for
the multi-realization estimator ĉm(k). Note that the decreasing sample size, N − k,
of the sliding-window estimator ĉ(k) increases the error of this estimator. For this
reason, ĉs(k) is also plotted. This is the same as ĉm(k), but with M = N − k. The
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first plot shows the autocorrelation estimators for k = 0 to 998; the second zooms in
on the first 50 values of k.

Remark B.7.11. We observe the following:

• Comparing the full-length and short-length multi-realization estimators ĉm(k)
vs. ĉs(k) shows that decreasing sample size does have an effect for larger k.
Nonetheless, the sliding-window estimator ĉ(k) shows markedly wilder behavior
for larger k, which cannot be accounted for by small-sample-size effects alone.

• For all three estimators, errors are small when k is small, which is when the
true autocorrelation c(k) = ηk is non-negligible.

• Thus, one should examine estimators of the autocorrelation only for values of k
until the estimators approach zero. Values past that point are neither accurate
nor needed.

B.8 Integrated autocorrelation time

Following [Berg], we develop the notion of integrated autocorrelation time as follows.
We reconsider the variance of the sample mean (see section B.6) from a different
point of view. Again, Xt is a stationary Markov process with common mean µX and
common variance σ2

X . We have

Var(XN ) = E[(XN − µX)2] =
1

N2

N−1
∑

i=0

N−1
∑

j=0

E[(Xi − µX)(Xj − µX)]

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

E[XiXj − µXXi − µXXj + µ2
X ]

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

(

E[XiXj ] − µ2
X

)

=
1

N2

N−1
∑

i=0

N−1
∑

j=0

Cov(Xi, Xj)

=
1

N2

[

N−1
∑

i=0

Var(Xi) + 2

N−1
∑

t=1

(N − t) Cov(X0, Xt)

]

=
σ2

X

N
+ 2σ2

X

N−1
∑

t=1

(N − t) Corr(X0, Xt)

=
σ2

X

N

[

1 + 2

N−1
∑

t=1

(

1 − t

N

)

Corr(X0, Xt)

]

≈ σ2
X

N

[

1 + 2

∞
∑

t=1

Corr(X0, Xt)

]

.

If Xt is IID then we recover the familiar Var(XN) = σ2
X/N ; otherwise we have

Var(XN ) =
σ2

X

N
τint (B.8.1)
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where τint is the last bracketed expression above. Note as well that if Corr(X0, Xk) =
ηk, then

τint = 1 + 2
∞
∑

t=1

ηt = 1 +
2η

1 − η
=

1 + η

1 − η
(B.8.2)

which is what we would have expected by comparing equations (B.6.2) and (B.8.1).
As a consequence, when c(t) = ηt we have

τint =
1 + η

1 − η
and η =

τint − 1

τint + 1
. (B.8.3)

Some values are shown for reference in table B.1.

η 0 0.1 0.2 0.5 0.6 0.9 0.990 0.999
(1 + η)/(1 − η) 1 1.222 1.500 3.000 4.000 19 199 1999

Table B.1. η vs. (1 + η)/(1 − η).

Remark B.8.4. If the process is IID, i.e. η = 0, then c(0) = 1, c(t) = 0 for all t ≥ 1,
and τint = 1.

Definition B.8.5. Recall that s2
N(Xt) (equation (B.7.5)) estimates σ2

X . Using equa-
tion (B.8.1), the naive estimator and corrected estimator of Var(XN) are

t2N (Xt) =
s2

N (Xt)

N
and u2

N(Xt) =
s2

N(Xt)

N
τ̂int, (B.8.6)

as long as we have an estimator τ̂int of τint.

B.9 Estimation of the integrated autocorrelation time

Recall from remark B.7.11 that ĉ(t) is a rather wild estimator of c(t) at high t. Since

τ̂int = 1 + 2

∞
∑

t=1

ĉ(t)

is nothing more than a sum of c(t), we can expect it to be ill-behaved as well.

Definition B.9.1. The running-sum estimator of τint is

τ̂int(t) = 1 + 2

t
∑

k=1

ĉ(k).
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Figure B.5. Estimated and exact integrated autocorrelation times for Yt with η =
0.9, using three realizations similar to the one in figure B.4. Burn-in iterates have
been discarded. The second plot zooms in on the first 50 samples of the first plot.
The flat-spot estimator τ̂int of τint is found by reading off the vertical coordinate of
the first turning point of each solid-line plot; the true τint is the horizontal asymptote
of the dotted-line plot. Two of the three turning points yield a τ̂int which is less than
the true τint. This is the general case: we find that τ̂int underestimates more often
than it overestimates. See also figure B.8 on page 150.

The idea is to accumulate the reliable low-t values of ĉ(t) until the sum becomes
approximately constant at some s, then stop and declare τ̂int to be τ̂int(s). This is the
flat-spot estimator or turning-point estimator for τint. See figure B.5 for illustration,
where s is approximately 24 for the blue realization and 29 for the red. From the plots,
we estimate τint ≈ 15; using equation (B.8.3), we estimate η = (15 − 1)/(15 + 1) =
0.875. This is reasonable since the data were obtained with η = 0.9, for which the
true τint is 19 by equation (B.8.2).

It is clear from the figure that estimators τ̂int can vary noticeably from one re-
alization to the next. Our estimator for the variance of the sample mean, i.e. the
error bar on the sample mean, is u2

N(Xt) (equation (B.8.6)). Since τ̂int is a factor in
u2

N(Xt), variations in τ̂int will result in error of the error bar. Figure B.6 shows that
variations in τ̂int increase with η.

At present I know of no solution to this problem other than the running of multiple
experiments — larger M , using the notation of section B.1. As long as τint is estimated
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Figure B.6. Estimated integrated autocorrelation times for Yt with η =
0.9, 0.99, 0.999, using ten realizations each. N is 100,000; burn-in iterates have been
discarded. Recall that true τint values are 19, 199, and 1999, respectively. The varia-
tion in the vertical coordinate of the first flat spot in each plot, which increases with
η, gives rise to the error of the error bar on the sample mean.

based on a single experimental result X0, . . . , XN−1, one must be aware that the error
bars on the sample mean are crude.

Remark B.9.2. As was noted in remark B.7.10, ĉ(t) underestimates c(t). Since τ̂int

is formed from a sum of ĉ(t)’s, τ̂int is also a fractional underestimator of τint, as will
be seen in section B.10.

B.10 Estimation of the variance of the sample mean

Given the flat-spot estimator τ̂int of τint from section B.9 and the naive estimator of
the variance of the sample mean from equation (B.8.6), we may now compute the
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corrected estimator of the the variance of the sample mean:

u2
N(Xt) =

s2
N(Xt)

N
τ̂int.

We use the correlated-uniform Markov process to illustrate, since for this process
all quantities have known theoretical values. As in section B.1, we display standard
deviations in our plots and tables, rather than variances: the units of measurement
of the former match those of the mean, and they correspond visually to variations in
the data.

• The mean and variance of Yt are µY = 1/2 and σ2
Y = 1/12; σY ≈ 0.289.

Using η = 0.0, 0.9, 0.999, the true τint is 1, 19, 1999, respectively. We conduct
M = 100 experiments of collecting and analyzing N = 10000 time-series samples
Y0, . . . , YN−1.

• The true mean is shown in row 1 of table B.2. Estimators Y N are shown in
figure B.7. The average of these over all M experiments is shown in row 2 of
table B.2.

• The true naive variance of the sample mean is σ2
Y /N , with true naive standard

deviation of the sample mean σY /
√

N ≈ 0.00289. The true corrected variance
of the sample mean is σ2

Y N
= τint σ2

Y /N = 1/120000, 19/120000, 1999/120000.

The true standard deviations of the sample means are then σY N
≈ 0.0028868,

0.0125831, 0.1290672. These are shown in row 3 of table B.2.

• The multi-experiment estimator sM(Y N) of σY N
is the sample standard devia-

tion of the M values XN
(0)

, . . . , XN
(M−1)

. These estimators are shown in row
4 of table B.2. As expected, the multi-experiment estimator is a good one.

• Next we turn to single-experiment estimators of the variance of the sample
mean. The estimated naive standard deviation of the sample mean is tN(Yt) =
sN(Yt)/

√
N . These are not plotted for each experiment; their average over all

M experiments is shown in row 5 of table B.2. Note that they match the true
variance of the sample mean only in the IID (η = 0) case.

• True values of τint for each η are shown in row 8 of the table. The flat-spot
estimators τ̂int for all M = 100 experiments are shown in figure B.8. Their
average and sample standard deviation over all M experiments are shown in
rows 9 and 10. As discussed in remark B.9.2, we see that τ̂int fractionally
underestimates τint.

• Using the τ̂int values, the corrected estimators uN(Yt) = tN (Yt)
√

τ̂int are shown,
for all M = 100 experiments, in figure B.9. Their averages over all M experi-
ments are shown in row 6 of table B.2. (Again, the corresponding true values
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are in row 2 of the table.) The fractional underestimation of τ̂int carries over
to uN(Yt). One trades the quality of the estimator for the feasibility of its
computation.

• Standard deviations over M experiments of uN(Yt) are shown in row 7 of the
table. Figure B.10 shows, for η = 0.999, the M = 100 values of Y N along with
their respective uN(Yt)’s. These show the error of the error bar.
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Figure B.7. Y N over M = 100 experiments, where the true value is µX = 0.5.
Variance of Y N increases with autocorrelation factor η.
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Figure B.8. τ̂int(Yt) over M = 100 experiments, along with true values. Note that
τ̂int(Yt) fractionally underestimates the true τint(Yt).

B.11 Integrated and exponential autocorrelation times

In remark B.7.1 of section B.7, we noted that if Corr(X0, Xt) = ηt for η ∈ [0, 1), then
we may define an exponential autocorrelation time via

τexp = −1/ log η
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Figure B.9. uN(Yt) over M = 100 experiments, along with true values. Note that
uN(Yt) fractionally underestimates the true standard deviation of the sample mean,
σY N

= σY /
√

N .

such that Corr(X0, Xt) = exp(−t/τexp). Yet section B.8 gave us something similar:
the integrated autocorrelation time τint. In particular, if Corr(X0, Xt) = ηt, then we
had

τint =
1 + η

1 − η
.

Figure B.11 compares these two.

B.12 Batched means

Introductory statistics tends to deal with the analysis of IID samples. Yet, realization
sequences from an MCMC experiment tend to be highly correlated. The sample mean
estimates the true mean, since expectation is linear. But when one wishes to place
an accurate error bar on the sample mean, correlations must be taken into account.

One approach (see for example [Berg], who calls this process binning) is to sub-
divide X0, . . . , XN−1 into K = N/B batches of size B. The K sample means over
batches may be treated as IID samples. The independence of the K samples means
that the variance of their sample mean will be reduced, but reducing the sample size
from N to K will increase the variance. We will show that these two effects cancel:
binning N samples down to K samples does not change the variance of the sample
mean. (As shown in [Berg], batched means have their uses: they may be used to
construct a method to estimate τint, as an alternative to the method of section B.9.)

Definition B.12.1. Given X0, . . . , XN−1 with common mean µX and variance σ2
X ,

let B divide N and K = N/B. Then B is the batch size and K is the number of

batches. For k = 0, . . . , K − 1, the kth batch consists of XkB, . . . , X(k+1)B−1. The
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Figure B.10. Y N with single-sigma error bars, η = 0, 0.9, 0.999, M = 100 experi-
ments, sorted by increasing Y N . The magnitude and the variation of the error bars
both increase with η.

sample mean of the kth batch is

Ak =
1

B

B−1
∑

i=0

XkB+i.

We now consider the sequence A0, . . . , AK−1. We define the batched mean to be

XN,B =
1

K

K−1
∑

k=0

Ak.
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Description η 0 0.9 0.999

1. True mean µY N
0.50000 0.50000 0.50000

2. Sample mean mM (Y N) 0.49948 0.49952 0.51100

mM (Y N) 0.49987 0.50231 0.47341
mM (Y N) 0.49991 0.49895 0.47958

3. True standard deviation
of sample mean

σY N
0.00288 0.01258 0.12906

4. Multi-experiment sM(Y N) 0.00274 0.01166 0.10342
estimator of σY N

sM(Y N) 0.00274 0.01167 0.12303

sM(Y N) 0.00298 0.00986 0.11929
5. Averaged mM(tN(Yt)) 0.00288 0.00287 0.00263
single-experiment naive mM(tN(Yt)) 0.00288 0.00288 0.00260
estimators of σY N

mM(tN(Yt)) 0.00288 0.00287 0.00250
6. Averaged mM(uN(Yt)) 0.00288 0.01279 0.09957
single-experiment corrected mM(uN(Yt)) 0.00289 0.01280 0.10037
estimators of σY N

mM(uN(Yt)) 0.00289 0.01276 0.08947

7. Sample standard sM(uN(Yt)) 0.00004 0.00105 0.04402
deviation of corrected sM(uN(Yt)) 0.00005 0.00108 0.04665
estimators of σY N

sM(uN(Yt)) 0.00006 0.00118 0.03851

8. True integrated τint 1 19 1999
autocorrelation time
9. Averages of estimated mM(τ̂int) 0.999 19.854 1442.627
integrated autocorrelation mM(τ̂int) 1.002 19.763 1500.137
time mM(τ̂int) 1.008 19.857 1279.173
10. Standard deviation sM(τ̂int) 0.028 3.162 865.992
across M experiments sM(τ̂int) 0.031 3.092 1045.842
of τ̂int sM(τ̂int) 0.039 3.628 758.903

Table B.2. Statistics for three trials of M = 100 experiments on N = 10000 samples
of Yt: η = 0.0, 0.9, 0.999.

By linearity of expectation, we immediately have E[XN,B] = µX . We next inquire
about the variance of the batched mean, then compare that to the variance of the
(non-batched) sample mean.

B.13 Variance and covariance of batches

To compute Var(Ak) and Corr(A0, Ak), we first need E[AkAℓ] for k = ℓ and k 6= ℓ.
In the k = ℓ case, the computation is the same as in section B.6, with B playing the
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Figure B.11. Integrated and exponential autocorrelation times as a function of η.

role of N . We have

E[A2
k] ≈ µ2

X +
σ2

X

B

(

1 + η

1 − η

)

and Var(Ak) ≈
σ2

X

B

(

1 + η

1 − η

)

.

For k 6= ℓ, without loss of generality assume k < ℓ. Using equation (B.6.1), we have

E[AkAℓ] =
1

B2

B−1
∑

i=0

B−1
∑

j=0

E[XkB+iXℓB+j ] =
1

B2

B−1
∑

i=0

B−1
∑

j=0

(µ2
X + σ2

XηℓB+j−kB−i)

= µ2
X +

σ2
Xη(ℓ−k)B

B2

B−1
∑

i=0

η−i
B−1
∑

j=0

ηj = µ2
X +

σ2
Xη(ℓ−k)B

B2

(

1 − ηB

1 − η

)2

.

If the batch size is chosen so that ηB is negligible, then

E[AkAℓ] = µ2
X .

Now we have (for ηB ≈ 0)

Var(Ak) ≈
σ2

X

B

(

1 + η

1 − η

)

and Corr(Ak, Aℓ) =
E[AkAℓ] − µ2

X

σ2
A0

= δk,ℓ. (B.13.1)

This justifies the hope that batches can be constructed to form an IID sequence.
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B.14 Variance of the batched mean

We now find out what effect batching has on the variance of the sample mean: batch-
ing produces an IID sequence, which will reduce the variance (equation (B.8.1)), yet it
reduces the sample size from N down to K = N/B, which by central-limit reasoning
should increase the variance.

For the non-batched mean, we have the random variables X0, . . . , XN−1; param-
eters are mean µX , variance σ2

X , autocorrelation ηk, and (from equation (B.8.3))
integrated autocorrelation time τint = (1 + η)/(1 − η). Equation (B.6.2) gives

Var(XN) =
σ2

X

N

(

1 + η

1 − η

)

. (B.14.1)

For the batched mean, we batch X0, . . . , XN−1 into K IID batches of size B. We
have the random variables A0, . . . , AK−1, with mean µX , variance (σ2

X/B)(1+η)/(1−
η) (equation (B.13.1)), autocorrelation c(k) = δ0,k (since Ak is IID) and integrated
autocorrelation time τint = 1 (remark B.8.4). Then

Var(XN,B) =
σ2

X

KB

(

1 + η

1 − η

)

=
σ2

X

N

(

1 + η

1 − η

)

.

Thus, to first order in η and N , as long as B is large enough that ηB is negligibly
small, we do not expect batching to change the variance of the sample mean.

Table B.3 shows some sample results of these calculations for the correlated-
uniform Markov process Yt. There are M = 100 experiments of N = 10000 samples.
Each experiment was analyzed as-is (B = 1), as well as with batch size B = 64, 512,
and 4096. (Recall from table B.1 that η = 0, 0.9, 0.999 correspond to τint = 1, 19, 1999,
respectively.) Now the process being analyzed is A0, . . . , AK−1 where K = N/B. We
note the following:

• For B = 1 (the original time series), the estimator u2 of the variance of the
sample mean employed was the corrected estimator of equation (B.8.6), while
for B = 64, 512, 4096, the Ak’s were treated as if they were IID. That is, for
B > 1 we set u2 = t2.

• Batch size does not, of course, affect the sample mean (column 3 of the table).
Likewise, it does not affect the multi-experiment estimator of the variance of
the sample mean (column 4).

• The true variance of the sample mean, σAN
=
√

τintσ2
Ak

/K, is shown in column

5.

• The last two columns show the first two autocorrelation estimates. These show
that for η = 0 (the IID case), Yt samples are indeed approximately IID. For
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η = 0.9, the B = 64 batches are nearly independent, and the largest batches
are quite weakly correlated. For η = 0.999, where τint = 1999, batch sizes of 64
and 512 are too small, but batch size 4096 is large enough to produce weakly
correlated batches.

• For η = 0, the average of the single-experiment estimator u of the variance
of the sample mean is approximately constant with respect to batch size. For
η = 0.9 and η = 0.999, once the batch size is large enough to get weakly
correlated samples, the estimator u2 on batches agrees with the estimator u2 on
the original time-series data.

• The multi-realization estimator and the averaged single-realization estimator of
the variance of the sample mean (columns 4 and 6) roughly agree, for batch
sizes large enough that batches are weakly correlated.

• The error of the error bar (column 7 of the table) is not improved by use of
batched means.

η B mM (AN ) sM (AN ) σ
AN

mM (uN(Ak)) sM (uN(Ak)) ĉAk
(0) ĉAk

(1)

0.000 1 0.5001 0.00113 0.00113 0.00113 0.000002 1.0000 0.0001
0.000 64 0.5001 0.00113 0.00113 0.00113 0.000027 0.9990 0.0378
0.000 512 0.5001 0.00113 0.00113 0.00114 0.000073 0.9922 0.0031
0.000 4096 0.5001 0.00113 0.00113 0.00111 0.000206 0.9375 0.2053

0.900 1 0.4996 0.00481 0.00492 0.00490 0.000034 1.0000 0.8982
0.900 64 0.4996 0.00481 0.00492 0.00451 0.000103 0.9990 0.1591
0.900 512 0.4996 0.00481 0.00492 0.00480 0.000280 0.9922 -0.0552
0.900 4096 0.4996 0.00481 0.00492 0.00476 0.000894 0.9375 0.1445

0.999 1 0.5112 0.04801 0.05042 0.04937 0.004180 1.0000 0.9987
0.999 64 0.5112 0.04801 0.05042 0.00874 0.000756 0.9990 0.9493
0.999 512 0.5112 0.04801 0.05042 0.02301 0.002276 0.9922 0.6462
0.999 4096 0.5112 0.04801 0.05042 0.04280 0.007354 0.9375 -0.0060

Table B.3. Statistics for M = 100 batched experiments on N = 65536 samples of
Yt: η = 0.0, 0.9, 0.999.

B.15 Conclusions on error bars, autocorrelation, and batched

means

Given an MCMC experimental result X0, . . . , XN−1, we may compute the sample
mean XN and an estimator s2

N(Xt) of the sample variance.
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Batched means improve neither the bias nor the variation of the error bar. The
variance reduction obtained by (approximate) independence of batches cancels out
the variance increase caused by reduced sample size.

Computing autocorrelations and summing them as described in section B.9, we
may obtain an estimate τ̂int of the integrated autocorrelation time τint. This is used
to update the naive estimated variance of the sample mean t2N(Xt) = s2/N to the
corrected estimator u2

N(Xt) = τ̂ints
2/N . With the understanding that τ̂int has itself a

noticeable variance and a fractional underbias, uN estimates the standard deviation
of the sample mean.


