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APPENDIX A

BOSE-GAS DERIVATION OF RANDOM PERMUTATIONS

In this sketch, we motivate the otherwise ab-initio construction of the model of ran-
dom spatial permutations in chapter B More details may be found in [BUO7, [U07].

As above, we write X = (Xy,...,Xy) for xi,...,Xy in a d-dimensional cube A of
width L. The Hamiltonian for N pair-interacting particles is

N
H(X)=-) Vi+ > Ulx—x) (A.0.1)
i=1 1<ij<N

The U considered here is either identically zero (for the non-interacting case), or a
hard-core potential with radius a, i.e. U(x; — x;) is infinite for |x; — x;| < a and
zero for |x; — x;| > a. (This is an approximation to the true pair potential between

helium atoms. See figure [A]] [Ceperley|.) The hard-core radius a is also known as
the scattering length.
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FIGURE A.1. Pair potential between helium atoms (Ceperley, 1995).

The partition function for N distinguishable particlesﬂ is Tr(e~#H). Symmetrizing
the partitition function, since our particles are bosons, the trace is

Trre (e ") = Trp» (P+e_BH) = Trye (e_ﬁHPJr)

sym

For a particle Hamiltonian, the 3 = 1/T factor is in the expected place. This is in contrast
to the permutation expression in chapter Bl where the 3 factor is, surprisingly, reciprocated. As
discussed in [BUQO7, [UO7], the reciprocated f is correct for the permutation Hamiltonian.
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where )
Py f(x1,...,xy) = i Z M. f(x1,...,XN)
TESn
and
M(fx1,...,xn) == f(Xr1), - - X))
That is,

TrLgym(e_ﬁH) = % Z Try2 (e_ﬁHMw) )

" neSn

(The operator e "M is bounded and compact, but this fact is not needed.)
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FIGURE A.2. Feynman-Kac representation of a gas of 5 bosons. The horizontal
plane represents the d spatial dimensions, and the vertical axis is the imaginary time
dimension. The picture shows five particles and two cycles, of respective length 4 and
1.

The following steps are involved in developing a bosonic Feynman-Kac formula.
The first three steps closely parallel the steps used to construct the familiar single-
particle Feynman-Kac formula. (1) Interpret e "M M, as an expectation over Brown-
ian motions. (2) Write e "M M, as an integral operator, and find the kernel. (3) Com-
pute Tr(e "MM,) in terms of Brownian bridges. (4) Sum over 7 € Sy to obtain
7 = TrLgym(e‘ﬁH). Importantly, one expresses Z as sum over permutations 7 of

—Hp(X.m) where this new Hp will be viewed as a Hamiltonian for permuations 7. At

e
this point, the permutation Hamiltonian is found inside e=#7(X™); one lacks an expres-

sion for its logarithm. (5) Decouple the non-interacting terms from the interacting

. . . . . 1
terms in the permutation Hamiltonian, so that one may write e‘Hl(DO '(Xm)-Hp (X7,
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The bosonic Feynman-Kac formula now contains terms for two-jump interactions,
three-jump interactions, and so on. (6) A cluster expansion allows one to drop all
but two-jump interactions. The cluster expansion furthermore allows one to take the
logarithm of e=#7X™ with an explicit expression for Hp(X, 7). (7) One recognizes
the random-cycle model from equation (1) of chapter B with an explicit two-jump
interaction V. Specifically, given one permutation jump from x; to X(;y and another
permutation jump from x; to X.(j), the two-jump interaction V (x;, Xx(i), X;, Xr(j)) in-
volves the probability that two Brownian bridges, running in time 23 from x; to X,
and x; to X,(;), respectively, pass within distance 2a from one another.



