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Appendix A

Bose-gas derivation of random permutations

In this sketch, we motivate the otherwise ab-initio construction of the model of ran-
dom spatial permutations in chapter 2. More details may be found in [BU07, U07].
As above, we write X = (x1, . . . ,xN) for x1, . . . ,xN in a d-dimensional cube Λ of
width L. The Hamiltonian for N pair-interacting particles is

H(X) = −

N
∑

i=1

∇2
i +

∑

1≤i,j≤N

U(xi − xj). (A.0.1)

The U considered here is either identically zero (for the non-interacting case), or a
hard-core potential with radius a, i.e. U(xi − xj) is infinite for |xi − xj| ≤ a and
zero for |xi − xj| > a. (This is an approximation to the true pair potential between
helium atoms. See figure A.1 [Ceperley].) The hard-core radius a is also known as
the scattering length.

Figure A.1. Pair potential between helium atoms (Ceperley, 1995).

The partition function for N distinguishable particles1 is Tr(e−βH). Symmetrizing
the partitition function, since our particles are bosons, the trace is

TrL2
sym

(e−βH) = TrL2

(

P+e−βH
)

= TrL2

(

e−βHP+

)

1For a particle Hamiltonian, the β = 1/T factor is in the expected place. This is in contrast
to the permutation expression in chapter 2, where the β factor is, surprisingly, reciprocated. As
discussed in [BU07, U07], the reciprocated β is correct for the permutation Hamiltonian.
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where

P+ f(x1, . . . ,xN) :=
1

N !

∑

π∈Sn

Mπf(x1, . . . ,xN)

and
Mπ(fx1, . . . ,xN) := f(xπ(1), . . . ,xπ(N)).

That is,

TrL2
sym

(e−βH) =
1

N !

∑

π∈SN

TrL2

(

e−βHMπ

)

.

(The operator e−βH is bounded and compact, but this fact is not needed.)
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Figure A.2. Feynman-Kac representation of a gas of 5 bosons. The horizontal
plane represents the d spatial dimensions, and the vertical axis is the imaginary time
dimension. The picture shows five particles and two cycles, of respective length 4 and
1.

The following steps are involved in developing a bosonic Feynman-Kac formula.
The first three steps closely parallel the steps used to construct the familiar single-
particle Feynman-Kac formula. (1) Interpret e−βHMπ as an expectation over Brown-
ian motions. (2) Write e−βHMπ as an integral operator, and find the kernel. (3) Com-
pute Tr(e−βHMπ) in terms of Brownian bridges. (4) Sum over π ∈ SN to obtain
Z = TrL2

sym
(e−βH). Importantly, one expresses Z as sum over permutations π of

e−HP (X,π), where this new HP will be viewed as a Hamiltonian for permuations π. At
this point, the permutation Hamiltonian is found inside e−HP (X,π); one lacks an expres-
sion for its logarithm. (5) Decouple the non-interacting terms from the interacting

terms in the permutation Hamiltonian, so that one may write e−H
(0)
P

(X,π)−H
(1)
P

(X,π).
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The bosonic Feynman-Kac formula now contains terms for two-jump interactions,
three-jump interactions, and so on. (6) A cluster expansion allows one to drop all
but two-jump interactions. The cluster expansion furthermore allows one to take the
logarithm of e−HP (X,π), with an explicit expression for HP (X, π). (7) One recognizes
the random-cycle model from equation (2.1.1) of chapter 2, with an explicit two-jump
interaction V . Specifically, given one permutation jump from xi to xπ(i) and another
permutation jump from xj to xπ(j), the two-jump interaction V (xi,xπ(i),xj ,xπ(j)) in-
volves the probability that two Brownian bridges, running in time 2β from xi to xπ(i)

and xj to xπ(j), respectively, pass within distance 2a from one another.


