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Abstract

I exposit a recent paper of Daniel Ueltschi which connects a random-cycle model for spatial permu-

tations to Bose-Einstein condensation for interacting particles. This work satisfies the requirement for

my written comprehensive examination in the University of Arizona Department of Mathematics.
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1 Introduction

My comprehensive examination exposits the paper [U07]. The problem at hand is to determine the effects of
interparticle interactions on the critical temperature of Bose-Einstein condensation; a so-called random-cycle
model is employed to this end.

A large fraction of this paper is occupied by the appendices. This reflects the fact that much of my work
on this project has been in filling the gap between my coursework and the research papers being presented.
The experienced reader may wish to skip the appendices entirely.

The plan of this paper is as follows:

• A non-technical discussion of the historical context of the project; a mention of alternative approaches.

• The random-cycle approach to the BEC problem requires a model of spatial permutations. This model
is developed mathematically — it is of probabilistic interest on its own — without reference to the
Bose gas. (Main results about the latter are summarized in the appendices.)

• The model of spatial permutations is connected to the Bose gas:

– One begins with a Hamiltonian for particles with two-body interactions.

– Using a multi-body Feynman-Kac approach involving permutation symmetry of bosonic wave
functions, one obtains a Hamiltonian in which permutation jumps rather than particles interact.

– A cluster expansion, to first order in the scattering length of the particles, yields a Hamiltonian
with only jump-pair interactions. At this point, one may employ the random-cycle model of
spatial permutations.

• A simplified random-cycle model, called the two-cycle-interaction model, is described. In particular,
this simplified model is amenable to Monte Carlo simulation and will play a key role in my dissertation
work. Brownian bridges are the theoretical workhorse of this paper, but are computationally expensive
to simulate. The two-cycle-interaction model bypasses Brownian bridges entirely.
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2 Historical context

2.1 Theory

In 1924, the physicist Satyendra Nath Bose examined the quantum statistics of photons. In 1925, col-
laborating with Bose, Albert Einstein realized that the same could be done with non-interacting massive
particles. He also discovered the condensation phenomenon: a macroscopic occupation of the (single-particle)
ground state of the external potential [LSSY]. Moreover, Einstein predicted a critical temperature for the
phenomenon. This temperature was so low — at the nanokelvin scale — that Bose-Einstein condensation
attracted little interest in the physics community.

Feynman in 1953, along with Penrose and Onsager in 1956 [Feynman, PO], developed the theoretical notion
of long permutation cycles in the Feynman-Kac representation of the Bose gas. Feynman claimed that long
cycles correspond to Bose-Einstein condensation.

András Sütő referred to the existence of long permutation cycles as cycle percolation. He proved in 1993 that
BEC implies cycle percolation in the non-ideal (interacting) gas [Sütő1], and proved the converse in 2002
for the ideal (non-interacting) gas. Sütő moreover proved in the 2002 paper that there are infinitely many
macroscopic cycles in the condensation of the non-ideal Bose gas.

For the ideal Bose gas, BEC is defined as the macroscopic occupation of the single-particle ground state
of the external potential. For an interacting Bose gas, Hamiltonian eigenfunctions do not factor and thus
there are no single-particle ground states. BEC is carefully defined for interacting systems [LSSY] in terms
of the largest eigenvalue of a density-matrix operator. The 1983 work of Buffet and Pulè [BP] examines the
macroscopic occupation of the zero Fourier mode.

2.2 Experiments

Liquid helium was produced in the laboratory by Kammerlingh Onnes in 1908; Fritz London in 1938 [London]
connected superfluidity of liquid helium with Bose-Einstein condensation. Here, however, atoms of liquid
helium are strongly interacting — they attract only weakly, due to helium being a noble gas, but there are
strong repulsive effects due to the high density of the liquid. Thus, Einstein’s non-interacting theory could
not explain the phenomenon.

Several groups attempted during the 1990s to produce BECs in vapors of spin-polarized hydrogen, but were
not able to achieve low enough temperatures. The group of Cornell and Wieman [AEMWC], using hybrid
cooling methods, successfully brought rubidium atoms to well below the critical temperature and made
numerous measurements on the resulting condensates. (The group received the 2001 Nobel prize in physics
for this work.)

Interested in BECs was sparked by this experimental success: thousands of papers, both theoretical and
experimental, have been published on BECs in the years since. The work of Cornell and Wieman was of
interest for several reasons:

• Condensates were directly imaged. Measurments were taken of temperature, density, position, velocity,
particle number, and the fraction of the condensate occupying the ground state of the 3D harmonic
trapping potential.

• The method was able to vary temperature and density through wide ranges; the condensate fraction
was varied from zero to 100 percent.
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• The gaseous rubidium condensate was weakly interacting — permitting a perturbative analysis which
liquid helium, with its strong interactions, did not allow. (Note in particular that the work of Ueltschi
et al. is a weak-interaction theory; it is valid to first order in the interparticle interaction strength.)

2.3 Critical temperature

Recall that Einstein predicted a critical temperature Tc for the ideal Bose gas. It is a long-standing question
to discover the effects of interbosonic interaction strength a on the critical temperature. Moreover, one may

fix the density ρ
(a)
c and obtain a critical temperature T

(a)
c = 1/β

(a)
c or vice versa; also, both of these critical

parameters depend on the interaction strength a. One expects the critical combination of parameters to be
a manifold in (ρ, β, a) space. (See figure 1.)

ρ

a

β

Critical line a = 0, ρ = ζ(3/2)/(4πβ)3/2

Weak-interaction regime

Figure 1: Critical manifold in (ρ, β, a) for small a.

Much is known about the a = 0 line of this critical manifold; off a = 0, even the crude shape has been under
debate. The following findings are described by [BBHLV]: The superfluid transition temperature of liquid
helium is lower than that of an ideal gas of the same density. Thus, assuming that helium superfluidity is a
strongly interacting BEC, one would expects interactions to decrease the critical temperature for the strongly
interacting case. Various theoretical work (tabulated below) suggested either an increase or a decrease in
critical temperature; path-integral simulations for low density (i.e. weak interactions) showed an increase in
critical temperature. The emerging consensus is that

∆T

Tc
=
T

(a)
c − T

(0)
c

T
(0)
c

is linear in a for small a.

Ueltschi makes the following summary of the theoretical work on this question. (See also [AM, KPS, NL]

for a review on the widely varying experimental results on T
(a)
c ; see [BBHLV] for a thorough listing of the

progress up to 2001.)

• 1964: Huang: ∆T
Tc

∼ (aρ1/3)3/2, increases

• 1971: Fetter & Walecka: ∆T
Tc

decreases

• 1982: Toyoda: ∆T
Tc

decreases
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• 1992: Stoof : ∆T
Tc

= c aρ1/3 + o(aρ1/3), c > 0

• 1996: Bijlsma & Stoof : c = 4.66

• 1997: Grüter, Ceperley, Laloë: c = 0.34

• 1999: Holzmann, Grüter, Laloë: c = 0.7; Holzmann, Krauth: c = 2.3;

• 1999: Baym et. al.: c = 2.9

• 2000: Reppy et. al.: c = 5.1

• 2001: Kashurnikov, Prokof’ev, Svistunov : c = 1.29

• 2001: Arnold, Moore: c = 1.32

• 2004: Kastening: c = 1.27

• 2004: Nho, Landau: c = 1.32

The work of Ueltschi et al. [GRU, BU07, U06, U07] extends the permutation point of view originated by
Feynman, Penrose, and Onsager, drawing on the work of Sütő, Buffet, and Pulè [Feynman, PO, Sütő1, Sütő2,
BP]. The main goal of the project is to quantify ∆T/Tc for non-ideal Bose gases in the small-scattering-length
regime. As is often the case in statistical mechanics, the study of this interacting system necessitates the use
of computational methods. The papers [BU07, U07], which are exposited in my comprehensive examination,
develop the theoretical basis for the model which my disseration work will explore computationally and
statistically.
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3 Models of spatial permutations

Here we define and describe two configuration models of spatial permutations from a mathematical point
of view. These models will be related to the physics of the Bose gas in section 4.13. The exposition here
follows section 2 of [U07], with additional insights drawn from section 2 of [BU07].

3.1 Definitions

State space: Let Λ ⊂ R
d be a cube of width L and volume V = Ld. Let N ∈ Z

+ and X = (x1, . . . ,xN )
for x1, . . . ,xN ∈ Λ. The state space of the model of spatial permutations is

ΩΛ,N = ΛN × SN

where SN is the group of permutations of N points. (See figure 2.)

x1

x2

x8

x7

x6

x5

x3

x4

‖x5 − xπ(5)‖

V (x4,xπ(4),x1,xπ(1)

Figure 2: A configuration of X and π with N = 8.

Hamiltonian: The probability measure on this state space will be constructed through a Hamiltonian. The
background probability measure is discrete (uniform) in π and continuous (Lebesgue) in X. The Hamiltonian
is as follows:

HP (X, π) =

N∑

i=1

1

4β
‖xi − xπ(i)‖

2 +
∑

1≤i<j≤N

V (xi,xπ(i),xj ,xπ(j)). (3.1.1)

(The 1/4β factor is the reciprocal of what is more commonly encountered in statistical mechanics. For now,
think of this as an ansatz. In section 4.6, this choice of scale factor will be found to be appropriate.)

The operator H is unbounded, but it is symmetric so we consider its self-adjoint extension. We take its
domain to be f in C2(ΛN ) w/ Dirichlet boundary conditions.

There are two contributions to the energy of a configuration (X, π):

• The first1 contribution to the energy is the sum of squares of permutation jump lengths. (One jump
is marked with a heavy arrow in figure 2.) This makes permutations with long jumps disfavored;
permutations with many short jumps will be less strongly disfavored.

1The papers [BU07] and [U07] generalize from ‖xi − xπ(i)‖ to ξ(xi,xπ(i)) where ξ is a spherically symmetric non-negative-

valued function on Rd having integrable e−ξ. This generalization is not of interest in the current paper, nor will it be of interest
in my dissertation to follow.
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• The second contribution to the energy is the double sum over interactions between permutation jumps.
(One such jump-pair interaction is marked with wavy grey lines in figure 2.)

Jump-interaction potentials: The specific form of the jump-pair interaction is left unspecified at present,
but we will require the following properties: V is translation-invariant i.e.

V (x,y,x′,y′) = V (x + a,y + a,x′ + a,y′ + a)

for all a ∈ Λ, and
V (x,y,x′,y′) = V (x′,y′,x,y)

for all x,y ∈ Λ.

We will consider three different jump-interaction potentials:

• One may certainly take the jump interaction V to be zero.

• In section 5, the jump interaction V will involve the probability of the intersection of Feynman paths.

• In section 6, we will treat all jump pairs as non-interacting unless they participate in a two-cycle.

Partition functions: We consider two partition functions, for a fixed point configuration X and for an
average over point configurations, respectively:

Y (Λ,X) =
∑

σ∈SN

e−HP (X,σ) and Z(Λ, N) =
1

N !

∫

ΛN

Y (Λ,X) dX.

Probability measures: Then we have two corresponding discrete probability measures on the finite set
SN , for a fixed point configuration X and for an average over point configurations, respectively:

PΛ,X(π) =
e−HP (X,π)

∑

σ∈SN
e−HP (X,σ)

and PΛ,N (π) =
1

N !

∫

ΛN dXe
−HP (X,π)

1
N !

∫

ΛN dX
∑

σ∈SN
e−HP (X,σ)

.

These may also be written in terms of the partition functions as

PΛ,X(π) =
e−HP (X,π)

Y (Λ,X)
and PΛ,N (π) =

∫

ΛN dXe
−HP (X,π)

Z(Λ, N)N !
.

Note that for the non-interacting V = 0 case, we have the following heuristic:

• As β → 0, the probability measure becomes supported only on the identity permutation.

• As β → ∞, the probability measure approaches the uniform distribution on SN .

Random variables: Recall from section 2 that Feynman claimed, and Sütő proved for the ideal gas, that
Bose-Einstein condensation occurs if and only if there are infinite cycles in an infinite-volume extension of
the above probability model. Furthermore, note that cycles depend on the permutation only and not on the
geometric placement of x1, . . . ,xN . Thus we will be interested in random variables θ(π) rather than θ(X, π).
In this section we confine ourselves to mathematical statements only; the connection with the physics will
be made in section 4.13. Yet, we have motivated the choice of the following random variable.
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The particular random variable of interest, ̺m,n(π), is as follows. First define

ℓi(π)

to be the length of the permutation cycle containing the point xi. For example, for the point configuration
X and the permutation π in figure 2, we have

ℓ1(π) = ℓ2(π) = ℓ3(π) = ℓ4(π) = 4, ℓ5(π) = ℓ6(π) = ℓ7(π) = 3, and ℓ8(π) = 1.

Also let

ρ =
N

V
,

i.e. ρ is the particle density. For 1 ≤ m ≤ n ≤ N , define

̺mn(π) =
1

V
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

This random variable, taking values between 0 and ρ, is the density of sites in cycles of specified length.

One may also consider the related random variable

fm,n =
1

N
# {i = 1, . . . , N : m ≤ ℓi(π) ≤ n}

which is ̺m,n/ρ. This runs from 0 to 1 and is the fraction of sites in cycles of specified length. For figure
2, we have f2,3(π) = 3/8.

Expectations: For a random variable θ(π), we have

EΛ,X(θ) =
1

Y,X(Λ)

∑

π∈SN

θ(π)e−HP (X,π) and EΛ,N (θ) =
1

Z(Λ, N)N !

∫

ΛN

dX
∑

π∈SN

θ(π)e−HP (X,π).

Models: The probability measure PΛ,X(π) and the expectation EΛ,X(ρm,n) is treated in the paper [GRU]
where X is a cubic unit lattice; PΛ,N (π) and EΛ,N (ρm,n) are treated in [BU07] and [U07]. The former will
be referred to as the lattice-configuration model; the latter will be referred to as the point-process-

configuration model.

3.2 Existence of infinite cycles

Here we describe theorem 1 of [U07], which is proved in section 1 of [BU07]. This applies to the U ≡ 0 case.

Thermodynamic limit: We inquire about the fraction of sites participating in short and long cycles (as
quantified below) in the infinite-volume limit. Namely, we let V,N → ∞ with fixed ratio ρ = N/V , and we
ask about the cycle-length distribution as a function of ρ.

One does not need to construct an infinite-volume model, although this is done in section 3, for pure interest:
We will examine limits of expectations of random variables, where the limit is taken as the number of points
N of the model goes to infinity. The limits then are in R.

Critical density: We define the critical density, ρc(0), by the following formula. Here, this is simply an
ansatz. (See also section 6.4 where the critical density is discussed from a thermodynamic point of view.)

ρc(0) =

∫

Rd

dk

e4βπ2‖k‖2 − 1
. (3.2.1)
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Remark 3.2.2. One may compute

ρc(0) =

∫

Rd

dk

e4βπ2‖k‖2 − 1
=

ζ(3/2)

(4πβ)3/2
(3.2.3)

where ζ(z) is the Riemann zeta function.

Statement of the theorem: For any 0 < a < b < 1 (nominally, a is just above 0 and b is just below 1)
and any s ≥ 0,

lim
V →∞

EΛ,N (̺1,Na) =

{

ρ, ρ ≤ ρc(0)

ρc(0), ρc(0) ≤ ρ

lim
V →∞

EΛ,N (̺Na,Nb) = 0

lim
V →∞

EΛ,N (̺Nb,sN ) =







0, ρ ≤ ρc(0)

ρ− ρc(0), ρc(0) ≤ ρ ≤ s+ ρc(0)

s, s+ ρc(0) ≤ ρ.

(3.2.4)

(See figure 3.)

Density of sites in short cycles

Density of sites in long cycles
s

ρcρc

ρc

ρc + sρc + s

1

ρρ

Fraction of sites in short cycles

Fraction of sites
s

ρc+s

in long cycles

Figure 3: Distribution of cycle lengths as function of density in the infinite-volume limit.

This statement, in terms of the density of sites in cycles of specified lengths, may be more intuitively
rephrased in terms of the fraction of sites in cycles of specified length:

lim
V →∞

EΛ,N (f1,Na) =

{

1, ρ ≤ ρc(0)

ρc(0)/ρ, ρc(0) ≤ ρ

lim
V →∞

EΛ,N (fNa,Nb) = 0

lim
V →∞

EΛ,N (fNb,sN ) =







0, ρ ≤ ρc(0)

1 − ρc(0)/ρ, ρc(0) ≤ ρ ≤ s+ ρc(0)

s/ρ, s+ ρc(0) ≤ ρ.

The theorem has the following interpretation:

• At density below ρc(0), all sites are in short cycles and no sites are in long cycles.

• As density increases past ρc(0) and ρc(0) + s, fewer sites are in short cycles and more sites are in long
cycles. In particular, a strictly positive fraction of sites are in long cycles.

13



• Asymptotically, all sites are in long cycles.

Late note: The recent paper [BU08] produces an expression for ρc, as well as an analogue of the previous
theorem, for the weakly interacting (U 6≡ 0) case.

14



4 Bosonic Feynman-Kac formulas

In this section, the heart of this paper, we recast a familiar Hamiltonian involving pair-interacting par-

ticles as a new Hamiltonian involving pair-interacting permutations. We use the canonical partition
function as the vehicle for this transformation:

Hamiltonian for particles −→ partition function −→ Hamiltonian for permuations.

A Feynman-Kac formula for N interacting bosons allows the partition function to be transformed in the
middle step.

4.1 Outline

As in section 3.1, we write X = (x1, . . . ,xN ) for x1, . . . ,xN in a d-dimensional cube Λ of width L. The
Hamiltonian for N pair-interacting particles is

H(X) = −

N∑

i=1

∇2
i +

∑

1≤i,j≤N

U(xi − xj). (4.1.1)

The U considered in this paper is either identically zero (for the non-interacting case), or a hard-core

potential with radius a, i.e. U(xi − xj) is infinite for |xi − xj | ≤ a and 0 for |r| > a. (This is an
approximation to the true pair potential between helium atoms. See figure 4 [Ceperley].) The hard-core
radius a is also known as the scattering length.

Figure 4: Pair potential between helium atoms (Ceperley, 1995).

As discussed in appendix A.8, the partition function for N distinguishable particles2 is Tr(e−βH). (Section
A.8 explains why Tr

(
e−βH

)
is of importance.) Symmetrizing the partitition function, since our particles are

bosons, the trace is
TrL2

sym
(e−βH) = TrL2

(
P+e

−βH
)

= TrL2

(
e−βHP+

)

2For a particle Hamiltonian, the β factor is in the expected place. This is in contrast to the permutation expression in
sections 3.1, where the β factor is, surprisingly, reciprocated. We will see in section 4.6 why the reciprocated β is correct for
the permutation Hamiltonian.
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where

P+ f(x1, . . . ,xN ) :=
1

N !

∑

π∈Sn

Mπf(x1, . . . ,xN )

and
Mπ(fx1, . . . ,xN ) := f(xπ(1), . . . ,xπ(N)).

That is,

TrL2
sym

(e−βH) =
1

N !

∑

π∈SN

TrL2

(
e−βHMπ

)
.

(The e−βH is bounded and compact, but this fact is not needed.)

x1 = w
(1)
0

x2 = w
(1)
2β

x5 = w
(5)
0

x5 = w
(5)
2β

y

x

β

Figure 5: Feynman-Kac representation of a gas of 5 bosons. The horizontal plane represents the d spatial
dimensions, and the vertical axis is the imaginary time dimension. The picture shows five particles and two
cycles, of respective length 4 and 1.

The following steps remain to develop a bosonic Feynman-Kac formula. The first three steps closely parallel
the steps used to construct the familiar single-particle Feynman-Kac formula in appendix E.

• Section 4.2: Interpret e−βHMπ as an expectation over Brownian motions, as in proposition E.2.1 for
the single-particle case.

• Section 4.3: Write e−βHMπ as an integral operator, and find the kernel.

• Section 4.4: Compute Tr(e−βHMπ) in terms of Brownian bridges.

• Section 4.5: Sum over π ∈ SN to obtain Z = TrL2
sym

(e−βH). Importantly, we will express Z as sum over

permutations π of e−HP (X,π), where this new HP will be viewed a Hamiltonian for a single permuation
π. At this point, the permutation Hamiltonian is found inside e−HP (X,π); we lack an expression for its
logarithm.

• Sections 4.6 and 4.7 decouple the non-interacting from the interacting terms in the permutation Hamil-

tonian, so that we may write e−H
(0)
P

(X,π)−H
(1)
P

(X,π).
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• The bosonic Feynman-Kac formula now contains terms for 2-jump interactions, 3-jump interactions,
and so on. In section 4.11, we discuss the cluster expansion which allows us to drop all but 2-jump
interactions. The cluster expansion furthermore allows us to take the logarithm of e−HP (X,π), with
an explicit expression for HP (X, π). We recognize the random-cycle model from section 3, with an
explicit 2-jump interaction V .

4.2 e
−βH

Mπ as expectation

Here we parallel the development for the single-particle case in section E.1.

Proposition 4.2.1. With H as in equation 4.1.1, we have

e−βHf(xπ(1), . . . ,xπ(N)) = E
xπ(1),...,xπ(N)

0



exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






f
(

w
(1)
2β , . . . ,w

(N)
2β

)



 .

Proof. Using the Trotter product formula (equation E.1.2), namely

eβ(A+B) = lim
n→∞

(

eβA/neβB/n
)n

with A =
∑N

i=1 ∇
2
i and B = −

∑

i<j U(xi − xj), we have

e−βHf(xπ(1), . . . ,xπ(N))

= lim
n→∞

(

e
β
n

P

i
∇2

i e−
β
n

P

i<j
U(xi−xj)

)n

f(xπ(1), . . . ,xπ(N))

= lim
n→∞

e
β
n

P

i ∇
2
i e−

β
n

P

i<j
U(xi−xj)

(

e
β
n

P

i ∇
2
i e−

β
n

P

i<j
U(xi−xj)

)n−1

f(xπ(1), . . . ,xπ(N)).

Recall that e−
β
n

P

i<j
U(xi−xj) is simply a scalar. Using the result of section C.2 to write e

β
n

P

i
∇2

i as an integral
operator (since the sum of N Laplacians, each on d dimensions, is a single (Nd)-dimensional Laplacian), and
writing

Z(k) = (z
(k)
1 , . . . , z

(k)
N ),

we have

e−βHf(xπ(1), . . . ,xπ(N)) = lim
n→∞

∫

RNd

g2β/n

(

X − Z(1)
)

e−
β
n

P

i<j
U(z

(1)
i

−z
(1)
j

)

(

e
β
n

P

i
∇2

i e−
β
n

P

i<j
U(xi−xj)

)n−1

f(xπ(1), . . . ,xπ(N)) dZ
(1).

Repeating n− 1 more times yields

lim
n→∞

∫

RNd

∫

RNd

· · ·

∫

RNd

︸ ︷︷ ︸

n times

g2β/n

(

X − Z(1)
)

· · · g2β/n

(

Z(n−1) − Z(n)
)

(
n∏

k=1

e−
β
n

P

i<j U(z
(k)
i

−z
(k)
j

)

)

f(xπ(1), . . . ,xπ(N)) dZ
(1) · · · dZ(n).
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We have an integrand in the form of remark D.3.7, with βk = 2kβ/n, so we can write

lim
n→∞

∫

RNd

∫

RNd

· · ·

∫

RNd

︸ ︷︷ ︸

n times

g2β/n

(

X − Z(1)
)

· · · g2β/n

(

Z(n−1) − Z(n)
)

exp







2β

n

(

−
1

2

)
∑

i<j

n∑

k=1

U
(

z
(k)
i − z

(k)
j

)






f(xπ(1), . . . ,xπ(N)) dZ

(1) · · ·dZ(n)

= E
xπ(1),...,xπ(N)

0



exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






f
(

w
(1)
2β , . . . ,w

(N)
2β

)



 .

4.3 e
−βH

Mπ as an integral operator

Proposition 4.3.1. If

H = −
∑

i

∇2
i +

∑

i<j

U(xi − xj),

then

e−βHf(xπ(1), . . . ,xπ(N)) =

∫

G2β,U (xπ(1), . . . ,xπ(N),y1, . . . ,yN )

f(y1, . . . ,yN ) dy1 · · · dyN

(4.3.2)

where
G2β,U (xπ(1), . . . ,xπ(N),y1, . . . ,yN ) =

E
xπ(1),...,xπ(N)

0



exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds







N∏

i=1

δ
(

w
(i)
β − y(i)

)



 .
(4.3.3)

Proof. Insert equation 4.3.3 into the right-hand side of 4.3.2, interchange expectation and integral, and
integrate out the delta function as in proposition E.2.1.

4.4 Tr(e−βH
Mπ) using Brownian bridges

Proposition 4.4.1. The trace may be computed using Brownian bridges as follows:

Tr(e−βHMπ) =

∫

dX

∫
(

N∏

k=1

dW
xk,xπ(k)

0,2β

(

w(k)
)
)

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds









 .

Proof. Using proposition C.3.1, we have

Tr(e−βHMπ) =

∫

G2β,U (xπ(1), . . . ,xπ(N),x1, . . . ,xN ) dX.

Equation 4.3.3 of proposition 4.3.1 gives us an expression for G. Then

Tr(e−βHMπ) =

∫

E
xπ(1),...,xπ(N)

0



exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds







N∏

i=1

δ
(

w
(i)
2β − x(i)

)



 dX.
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Using proposition D.5.3, we may convert this expectation over Brownian motion into an expectation over
Brownian bridges to obtain

Tr(e−βHMπ) =

N∏

i=1

g2β

(
xi − xπ(i)

)
∫

E
x1,xπ(1);...;xN ,xπ(N)

0,2β



exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds









 dX.

Using definition D.4.5, we may write this using dW notation:

Tr(e−βHMπ) =

∫

dX

∫
[

N∏

k=1

dW
xk,xπ(k)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.

4.5 Sum over π ∈ SN

Applying proposition 4.4.1, we continue the plan laid out in section 4, namely:

TrL2
sym

(e−βH) =
1

N !

∑

π∈SN

TrL2

(
e−βHMπ

)

=
1

N !

∫

dX
∑

π∈SN

[
N∏

k=1

∫

dW
xk,xπ(k)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.

Notationally, we may split this up as

TrL2
sym

(e−βH) =
1

N !

∫

dX
∑

π∈SN

e−HP (X,π)

e−HP (X,π) =

[
N∏

k=1

∫

dW
xk,xπ(k)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.

(4.5.1)

Here is the pivotal point of this paper — the original partition function appears as a sum over π of an
X-averaged quantity. That quantity is non-negative so we may write it as the exponential of something
which we call HP . The sum over permutations of e−HP is precisely what we would want for a partition
function involving energies, not of particles, but of individual permutations. The remaining steps of this
section involve separating out the non-interacting terms from the interacting terms in e−HP , and finding an
expression for the logarithm of e−HP .

4.6 Extraction of the non-interacting terms

In this section we obtain e−H
(0)
P

(X,π) as well as its logarithm.

Let U ≡ 0 in equation 4.5.1. Then we have

e−HP (X,π) =

[
N∏

k=1

∫

dW
xk,xπ(k)

0,2β

(

w(k)
)

(1)

]

.
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Recall from proposition D.6.3 and definition C.1.1 that
∫

dW
xk,xπ(k)

0,2β

(

w(k)
)

(1) = g2β(xk − xπ(k)) =
1

(4πβ)d/2
exp

{

−
1

4β
‖xk − xπ(k)‖

2

}

. (4.6.1)

Then

e−HP (X,π) =

[

1

(4πβ)dN/2

N∏

k=1

exp

{

−
1

4β
‖xk − xπ(k)‖

2

}]

=

[

1

(4πβ)dN/2
exp

{

−
1

4β

N∑

k=1

‖xk − xπ(k)‖
2

}]

.

We write

e−HP (X,π) =
1

(4πβ)dN/2
e−H

(0)
P

(X,π) (4.6.2)

where

H
(0)
P (X, π) =

1

4β

N∑

k=1

‖xk − xπ(k)‖
2. (4.6.3)

(We ignore the prefactor in equation 4.6.2 since it cancels out in the computation of expectations of random
variables.)

Remark 4.6.4. Here is the key point where we discover that the β in the permutation Hamiltonian is indeed
reciprocated — in contrast to our experience with particle Hamiltonians.

4.7 Extraction of the interacting terms

Here we use the result of the previous section to decompose the exponentiated permutation energy as

e−HP (X,π) = e−H
(0)
P

(X,π)e−H
(1)
P

(X,π).

Unlike section 4.6 where we found the logarithm of e−H
(0)
P , though, at this point we have only e−H

(1)
P . Finding

the logarithm of the latter requires the cluster expansion in section 4.11.

Equation 4.5.1 is

e−HP (X,π) =

[
N∏

k=1

∫

dW
xk,xπ(k)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.

Recall from definition D.6.1 that

dW
xi,xπ(i)

0,2β

(

w(k)
)

= g2β(xi − xπ(i)) dŴ
xi,xπ(i)

0,2β

(

w(k)
)

.

Combining the two, we have

e−HP (X,π) =

[
N∏

k=1

∫

g2β(xi − xπ(i)) dŴ
xi,xπ(i)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds







=

[
N∏

k=1

g2β(xi − xπ(i))

] [
N∏

k=1

∫

dŴ
xi,xπ(i)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.
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Since

g2β(xk − xπ(k)) =
1

(4πβ)d/2
exp

{

−
1

4β
‖xk − xπ(k)‖

2

}

(equation 4.6.1), we obtain

e−HP (X,π) =
1

(4πβ)dN/2
e−H

(0)
P

(X,π)

[
N∏

k=1

∫

dŴ
xi,xπ(i)

0,2β

(

w(k)
)
]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






.

Thus we define

e−H
(1)
P

(X,π) =

[
N∏

k=1

∫

dŴ
xk,xπ(k)

0,2β (w(k))

]

exp






−

1

2

∑

i<j

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds






. (4.7.1)

This appears very similar to equation 4.5.1; indeed, the only notational difference on the right-hand side is
the replacement of dW by dŴ.

4.8 Expansion of multi-jump interactions

In preparation for the cluster expansion in section 4.11, we reorganize e−H
(1)
P . We develop a heuristic for

multi-jump collision probabilities, then in section 4.9 apply the inclusion/exclusion principle to identify
k-jump interactions for increasing values of k.

These manipulations may be done formally, with little intuition. To develop a useful intuition to guide

understanding of the manipulations, we first interpret e−H
(1)
P in terms of collision probabilities.

Result: The result of this section is that e−H
(1)
P (equation 4.7.1) may be interpreted as the probability that

all N(N − 1)/2 jump pairs avoid one another.

The justification for this result is as follows.

• Recall that U(r) = ∞ for r ≤ a; U(r) = 0 for r > a.

• If the ith and jth Brownian-bridge paths ever come within radius a of one another at any Feynman
time between 0 and 2β, for a particular realizations of w(i) and w(j), then

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

is infinite. If they do not come within radius a of one another, then that integral is 0.

• Thus,

exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}

is 0 if the ith and jth bridges collide, and 1 if they avoid one another.

• Recall from definition D.4.5 that
∫

exp

{
∫ 2β

0

f(ws) ds

}

dWx,y
0,2β(w) := E

x,y
0,2β

[

exp

{
∫ 2β

0

f(ws) ds

}]

.

The difference of the Brownian bridges w(i) and w(j) is twice another Brownian bridge (proposition
D.4.10) so definition D.4.5 applies to w(i) − w(j).
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• Thus, the expectation

[∫

dŴ
xi,xπ(i)

0,2β

(

w(i)
)∫

dŴ
xj ,xπ(j)

0,2β

(

w(j)
)]

exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}

is the avoidance probability for the bridges w(i) and w(j).

• There are N permutation jumps and N(N − 1)/2 distinct jump pairs, so

e−H
(1)
P

(X,π) =

[
N∏

k=1

∫

dŴ
xk,xπ(k)

0,2β

(

w(k)
)
]
∏

i<j

exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}

(equation 4.7.1) is the probability that all N(N − 1)/2 jump pairs avoid one another.

4.9 Inclusion/exclusion and collision probabilities

The goal of this section is to reinterpret the avoidance probability of the previous section as an alternating
sum of collision probabilities.

Definition 4.9.1. Define

Υ
(

w(i) − w(j)
)

= 1 − exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}

.

We will frequently abbreviate this as Υij . In light of the discussion in the previous section, the expected
value of this is the collision probability for w(i) and w(j).

Then equation 4.7.1 becomes

e−H
(1)
P

(X,π) =

[
N∏

k=1

∫

dŴ
xk,xπ(k)

0,2β

(

w(k)
)
]
∏

i<j

(

1 − Υ
(

w(i) − w(j)
))

. (4.9.2)

Using de Morgan’s law, we have
P (all avoid) = 1 − P (any collide).

Let Cℓ be the event that the ℓth pair (w(i),w(j)) collides. There are N(N − 1)/2 such events. The latter
term is a union of events, so we may use the inclusion/exclusion principle to write

1 − P (∪Cℓ) = 1 −
∑

i

P (Ci) +
∑

ij

P (Ci ∩Cj) −
∑

ijk

P (Ci ∩ Cj ∩ Ck) + . . .

+ (−1)m
∑

m−tuples of jump pairs

P (m bridges collide) + . . .

+ (−1)N(N−1)/2P (all bridges collide).

Collecting summation symbols, i.e. ranking the terms of e−H
(1)
P by increasing m for probabilities of m-tuples

of jump pairs colliding, we have

e−H
(1)
P

(X,π) =

[
N∏

k=1

∫

dŴ
xk,xπ(k)

0,2β

(

w(k)
)
]

N(N−1)/2
∑

m=0

(−1)m
∑

(i1,j1),...,(im,jm)

m∏

ℓ=1

Υ
(

w(iℓ) − w(jℓ)
)

(4.9.3)
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The first sum is over sizes of subsets of the N(N − 1)/2 jump pairs; the second sum is over all possible ways
of selecting m pairs.

For example, with N = 3, there are N(N − 1)/2 = 3 jump pairs: 1, 2; 1, 3; 2, 3. Then

e−H
(1)
P

(X,π) = 1

− P (1, 2 collide) − P (1, 3 collide) − P (2, 3 collide)

+ P (1, 2 and 1, 3 collide) + P (1, 2 and 2, 3 collide) + P (1, 3 and 2, 3 collide)

− P (1, 2 and 1, 3 and 2, 3 collide).

Here there is one m value per line; the different P ’s on that line are indexed by ℓ. In terms of Υ’s, we have

e−H
(1)
P

(X,π) =

[∫

dŴ
x1,xπ(1)

0,2β

(

w(1)
) ∫

dŴ
x2,xπ(2)

0,2β

(

w(2)
)∫

dŴ
x3,xπ(3)

0,2β

(

w(3)
)]



 1
︸︷︷︸

m=0

− (Υ12 + Υ13 + Υ23)
︸ ︷︷ ︸

m=1

+ (Υ12Υ13 + Υ12Υ23 + Υ13Υ23)
︸ ︷︷ ︸

m=2

−Υ12Υ13Υ23
︸ ︷︷ ︸

m=3



 .

This collection of m-size subsets of the set of jump pairs is the difference between equations 4.9.2 and 4.9.3.

This expression has been obtained using the inclusion/exclusion principle. Notice, however, that one obtains
the same expression by distributing the product (1 − Υ12)(1 − Υ13)(1 − Υ23) (for N = 3) or, in general,
∏

i<j(1 − Υij).

4.10 Heuristic for cluster expansion

Moving the integrals through the sums in equation 4.9.3, we obtain

e−H
(1)
P

(X,π) =

N(N−1)/2
∑

m=0

(−1)m
∑

(i1,j1),...,(im,jm)

[
N∏

k=1

∫

dŴ
xk,xπ(k)

0,2β

(

w(k)
)
]

m∏

ℓ=1

Υ
(

w(iℓ) − w(jℓ)
)

. (4.10.1)

The heuristic (formalized by the cluster expansion as described in section 4.11) is that one may form an
approximation by also moving the integrals through the leftmost product.

(For example, let N = 3. For shorthand, let
∫

k

= dŴ
xk,xπ(k)

0,2β

(

w(k)
)

.

Then

e−H
(1)
P

(X,π) =

[∫

1

∫

2

∫

3

]

(1 − Υ12 − Υ13 − Υ23 + Υ12Υ13 + Υ12Υ23 + Υ13Υ23 − Υ12Υ13Υ23)

= 1 −

∫

1

∫

2

Υ12 −

∫

1

∫

3

Υ13 −

∫

2

∫

3

Υ23

+

∫

1

∫

2

∫

3

Υ12Υ13 +

∫

1

∫

2

∫

3

Υ12Υ23 +

∫

1

∫

2

∫

3

Υ13Υ23 −

∫

1

∫

2

∫

3

Υ12Υ13Υ23.

The integrals move trivially through the product for m = 0, 1; for m ≥ 2, the approximations are of the form
[∫

1

∫

2

∫

3

Υ12Υ13

]

≈

[∫

1

∫

2

Υ12

] [∫

1

∫

3

Υ13

]

(4.10.2)
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and so on. Dropping the m ≥ 2 terms depends on the smallness of this modification. This step is formalized
by the cluster expansion in section 4.11. Intuitively, recall that Υ12 is the probability that bridges 1 and
2 collide, while Υ12Υ13 is the probability of a collision between bridges 1 and 2 and bridges 1 and 3.
The approximation condition in equation 4.10.2 is that, for weak interactions, these events are weakly
correlated and hence nearly independent. This is always true when ij’s do not overlap. E.g. for N = 4,
[∫

1

∫

2

∫

3

∫

4
Υ12Υ34

]
=
[∫

1

∫

2
Υ12

] [∫

3

∫

4
Υ34

]
. The approximation applies to overlapping ij’s.)

Once the integrals have been moved through the leftmost product of equation 4.10.1, the expectation of
Υ(w(iℓ) − w(jℓ)) depends only on the Brownian bridges for w(iℓ) and w(jℓ).

We define

Vij = V (xi,xπ(i),xj ,xπ(j)) =

[∫

dŴ
xi,xπ(i)

0,2β

(

w(i)
)∫

dŴ
xj ,xπ(j)

0,2β

(

w(j)
)]

Υ
(

w(i) − w(j)
)

. (4.10.3)

Since we assume small interactions Vij ,

e−H
(1)
P

(X,π) ≈
∏

i<j

(1 − Vij)

≈
∏

i<j

(

1 − Vij +
V 2

ij

2
−
V 3

ij

6
+ . . .

)

=
∏

i<j

e−Vij = exp






−
∑

i<j

Vij






.

(4.10.4)

Here, the first ≈ comes from moving the stochastic integrals through the product as discussed at the start
of this section, and the second ≈ arises from the insertion of negligible higher-order terms in the Vij ’s.

For example, with N = 3, we have

(1 − V12)(1 − V13)(1 − V23) = 1 − (V12 + V13 + V23) + (V12V13 + V12V23 + V13V23) − V12V13V23

which we compare to

(

1 − V12 +
V 2

12

2
− . . .

)(

1 − V13 +
V 2

13

2
− . . .

)(

1 − V23 +
V 2

23

2
− . . .

)

= 1 − (V12 + V13 + V23) + (V12V13 + V12V23 + V13V23) − V12V13V23

+

(
V 2

12

2
+
V 2

13

2
+
V 2

23

2

)

−

(
V 2

12V13

2
+
V12V

2
13

2
+
V 2

12V23

2
+
V12V

2
23

2
+
V 2

13V23

2
+
V13V

2
23

2

)

+

(
V 2

12V
2
13

4
+
V 2

12V
2
23

4
+
V 2

13V
2
23

4

)

+

(
V 2

12V13V23

2
+
V12V

2
13V23

2
+
V12V13V

2
23

2

)

−

(
V12V

2
13V

2
23

4
+
V 2

12V
2
13V23

4
+
V 2

12V13V
2
23

4

)

+
V 2

12V
2
13V

2
23

8
+ . . . .

We have now achieved one of the goals outlined in section 4.1, namely, to find the logarithm of eH
(1)
P .

Equation 4.10.4 becomes

H
(1)
P (X, π) =

∑

1≤i<j≤N

V (xi,xπ(i),xj ,xπ(j))

where the jump-pair interaction is as in equation 4.10.3.
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4.11 Cluster expansion and jump-pair interactions

This section formalizes the heuristic in section 4.10. This topic is addressed in section 4 of [U07]. Given
time constraints leading up to my comprehensive examination, I will first finish other sections of this paper,
then complete this section if time permits.

4.12 Simplified jump-pair interactions

When one computes the jump-pair interaction, it is possible to replace the double Brownian bridge by a
single Brownian bridge. (See also figure 6.)

xi

xπ(i)

xπ(j)

xj

xπ(i) − xπ(j)

xi − xj

Ball of radius a

centered at the origin

Feynman paths for
particles of radius a

Figure 6: Replacement of double Brownian bridge by single Brownian bridge for jump-pair interactions.

Proposition 4.12.1. The jump-pair interaction Vij = V (xi,xπ(i),xj ,xπ(j)) (equation 4.10.3) satisfies

∫

dŴ
xi,xπ(i)

0,2β (w(i))

∫

dŴ
xj ,xπ(j)

0,2β (w(j))

[

1 − exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}]

=

∫

dŴ
xi−xj ,xπ(i),xπ(j)

0,4β (w(ij))

[

1 − exp

{

−
1

4

∫ 4β

0

U
(

w(ij)
s

)

ds

}]

.

Proof. From the definition of
∫
dW and

∫
dŴ (definitions D.4.5 and D.6.1, respectively), we have

∫

dŴ
xi,xπ(i)

0,2β (w(i))

∫

dŴ
xj ,xπ(j)

0,2β (w(j)) =

∫
dW

xi,xπ(i)

0,2β (w(i))

g2β(xi − xπ(i))

∫
dW

xj ,xπ(j)

0,2β (w(j))

g2β(xj − xπ(j))
(4.12.2)
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and
∫

dW
xi,xπ(i)

0,2β (w(i))

∫

dW
xj ,xπ(j)

0,2β (w(j))

[

1 − exp

{

−
1

2

∫ 2β

0

U
(

w(i)
s − w(j)

s

)

ds

}]

= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · · dz

(i)
n−1 dz

(j)
1 · · · dz

(j)
n−1

g2β/n

(

xi − z
(i)
1

)

g2β/n

(

z
(i)
1 − z

(i)
2

)

· · · g2β/n

(

z
(i)
n−2 − z

(i)
n−1

)

g2β/n

(

z
(i)
n−1 − xπ(i)

)

g2β/n

(

xj − z
(j)
1

)

g2β/n

(

z
(j)
1 − z

(i)
2

)

· · · g2β/n

(

z
(j)
n−2 − z

(j)
n−1

)

g2β/n

(

z
(j)
n−1 − xπ(j)

)

[

1 − exp

{

2β

n

(

−
1

2

)(

U(xi − xj) +
n−1∑

k=1

U
(

z
(i)
k − z

(j)
k

)
)}]

.

(4.12.3)

For brevity, let

z
(i)
0 = xi, z(i)

n = xπ(i)

z
(j)
0 = xj , z(j)

n = xπ(j).

Then the right-hand side of equation 4.12.3 becomes

lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · · dz

(i)
n−1 dz

(j)
1 · · · dz

(j)
n−1

n−1∏

k=0

g2β/n

(

z
(i)
k − z

(i)
k+1

) n−1∏

k=0

g2β/n

(

z
(j)
k − z

(j)
k+1

)
[

1 − exp

{

2β

n

(

−
1

2

) n−1∑

k=0

U
(

z
(i)
k − z

(j)
k

)
}]

.

We now make a change of variable. For k = 0, . . . , n, let

y
(ij)
k = z

(i)
k − z

(j)
k .

The linear map sending
(

z
(i)
k , z

(j)
k

)

to
(

z
(i)
k ,y

(ij)
k

)

is

(

z
(i)
k

y
(ij)
k

)

=

(
1 0
1 −1

)(

z
(i)
k

z
(j)
k

)

which has Jacobian determinant of absolute value 1, so we may replace

dz
(i)
1 · · · dz

(i)
n−1dz

(j)
1 · · ·dz

(j)
n−1

with
dz

(i)
1 · · · dz

(i)
n−1dy

(ij)
1 · · ·dy

(ij)
n−1.

Lemma C.1.4 tells us

g2β/n

(

z
(i)
k − z

(i)
k+1

)

g2β/n

(

z
(j)
k − z

(j)
k+1

)

= g4β/n

(

(z
(i)
k − z

(j)
k ) − (z

(i)
k+1 − z

(j)
k+1)

)

gβ/n

(

z
(i)
k − z

(i)
k+1 −

1

2

(

z
(i)
k − z

(j)
k

)

+
1

2

(

z
(i)
k+1 − z

(j)
k+1

))

= g4β/n

(

y
(ij)
k − y

(ij)
k+1

)

gβ/n

(

z
(i)
k − z

(i)
k+1 −

1

2
y

(ij)
k +

1

2
y

(ij)
k+1

)

= g4β/n

(

y
(ij)
k − y

(ij)
k+1

)

gβ/n

((

z
(i)
k − z

(i)
k+1

)

−
1

2

(

y
(ij)
k − y

(ij)
k+1

))

.
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Then we have

lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · · dz

(i)
n−1 dy

(ij)
1 · · · dy

(ij)
n−1

n−1∏

k=0

g4β/n

(

y
(ij)
k − y

(ij)
k+1

) n−1∏

k=0

gβ/n

((

z
(i)
k − z

(i)
k+1

)

−
1

2

(

y
(ij)
k − y

(ij)
k+1

))
[

1 − exp

{

−
β

n

n−1∑

k=0

U
(

y
(ij)
k

)
}]

.

Re-arranging terms (permissible by Tonelli’s theorem due to the non-negativity of the integrand) yields

lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dy
(ij)
1 · · · dy

(ij)
n−1

n−1∏

k=0

g4β/n

(

y
(ij)
k − y

(ij)
k+1

)
[

1 − exp

{

4β

n

(

−
1

4

) n−1∑

k=0

U
(

y
(ij)
k

)
}]

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · · dz

(i)
n−1

n−1∏

k=0

gβ/n

((

z
(i)
k − z

(i)
k+1

)

−
1

2

(

y
(ij)
k − y

(ij)
k+1

))

.

(4.12.4)

The second line of equation 4.12.4 collapses by the iterated Chapman-Kolmogorov proposition (proposition
C.1.3):

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · ·dz

(i)
n−1

n−1∏

k=0

gβ/n

((

z
(i)
k − z

(i)
k+1

)

−
1

2

(

y
(ij)
k − y

(ij)
k+1

))

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

dz
(i)
1 · · ·dz

(i)
n−1

n−1∏

k=0

gβ/n

((

z
(i)
k −

y
(ij)
k

2

)

−

(

z
(i)
k+1 −

y
(ij)
k+1

2

))

= gβ

((

z
(i)
0 −

y
(ij)
0

2

)

−

(

z(i)
n −

y
(ij)
n

2

))

= gβ

((

xi −
xi − xj

2

)

−

(

xπ(i) −
xπ(i) − xπ(j)

2

))

= gβ

(
xi + xj

2
−

xπ(i) + xπ(j)

2

)

.

With this scale factor pulled out of equation 4.12.4, and recognizing the first line of equation 4.12.4 from
definition D.4.5, we now have

gβ

(
xi + xj

2
−

xπ(i) + xπ(j)

2

)∫

dW
xi−xj ,xπ(i)−xπ(j)

0,4β (w(ij))

[

1 − exp

{

−
1

4

∫ 4β

0

U
(

w(ij)
s ds

)
}]

.

(4.12.5)

It remains to restore the normalizations from equation 4.12.2. From corollary C.1.5 we have

g2β(xi − xπ(i)) g2β(xj − xπ(j)) = g4β

(
(xi − xj) − (xπ(i) − xπ(j))

)
gβ

(
(xi + xj) − (xπ(i) + xπ(j))

2

)

.

The gβ factor is cancelled by the gβ factor in equation 4.12.5; the g4β factor is precisely the normalization

factor to convert equation 4.12.5’s dW to dŴ. (See definition D.6.1.) Then equation 4.12.5 becomes

∫

dŴ
xi−xj,xπ(i)−xπ(j)

0,4β (w(ij))

[

1 − exp

{

−
1

4

∫ 4β

0

U
(

w(ij)
s ds

)
}]

which is what was to be shown.
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4.13 Relation to spatial permutations

Sections 4.6 through 4.12 connect the permutation Hamiltonian, obtained via the bosonic Feynman-Kac
formula, with the random-cycle model as defined in section 3. Specifically, we have, in correspondence with
equation 3.1.1,

H(X, π) =
N∑

i=1

1

4β
‖xi − xπ(i)‖

2 +
∑

1≤i<j≤N

V (xi,xπ(i),xj ,xπ(j)) (4.13.1)

where

V (xi,xπ(i),xj ,xπ(j)) =

∫

dŴ
xi−xj,xπ(i),xπ(j)

0,4β (w(ij))

[

1 − exp

{

−
1

4

∫ 4β

0

U
(

w(ij)
s

)

ds

}]

. (4.13.2)

28



5 Model with full jump-pair interactions

Equation 4.13.2 for the jump-pair interactions was

V (xi,xπ(i),xj ,xπ(j)) =

∫

dŴ
xi−xj ,xπ(i),xπ(j)

0,4β (w(ij))

[

1 − exp

{

−
1

4

∫ 4β

0

U
(

w(ij)
s

)

ds

}]

.

This may be interpreted as the probability that a Brownian bridge (figure 6 on page 25) running from xi−xj

to xπ(i)−xπ(j) in time 4β intersects a ball of radius a centered at the origin. (Proposition 4.12.1 showed that
this is exactly equal to the collision probability for two bridges, one running from xi to xπ(i) and another
running from xj to xπ(j), in time 4β.)

Ueltschi’s 2007 paper [U07] has little more to say about this full jump-pair interaction. There are (at least)
three things which can be done with it:

• Computing it directly using simulation methods is an interesting statistical problem which will be
discussed further in my dissertation. (To date, I have found that simulation of this equation is of
prohibitive computational expense. Nonetheless, my dissertation will quantify this expense.)

• One may also hope that this equation could be written in terms of special functions. Our research on
this matter, and our contacts with experts in Brownian bridges, has not produced a special-function
expression.

• Although one may not simplify all interaction pairs, one may extract the strongest interaction pairs
(namely, two-cycles) and simplify those. This is discussed in section 6.

See also section 7 where future research is sketched.
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6 Simple model with two-cycle jump-pair interactions

For the simplified two-cycle-interaction model, unlike the fully interacting model of section 5, one obtains
expressions for the pressure, critical density, and critical temperature for the weakly interacting Bose gas.
These appear as perturbations to the known expressions for the ideal gas.

6.1 Motivation

Equation 4.13.2 is an expression for the jump-pair interaction. In section 5, we reviewed the difficulties in
either estimating or simplifying this expression in general.

The pair-jump potential is the collision probability for two bridges, one running from xi to xπ(i) and another
running from xj to xπ(j), in time 4β; one expects this probability to be highest for two-cycles. (In figure
6, one expects increased collision probability if xπ(i) = xj .) Thus, one may choose to neglect all Vij terms
except those involving two-cycles.

Notation 6.1.1. The shorthand notation
i ◦-π-◦ j

means that i and j participate in a two-cycle under π, i.e. π(i) = j, π(j) = i, and i < j.

Then equation 4.13.1 becomes

H(X, π) =

N∑

i=1

1

4β
‖xi − xπ(i)‖

2 +
∑

1≤i<j≤N

V (xi,xπ(i),xj ,xπ(j))

≈ H̃P (X, π) =

N∑

i=1

1

4β
‖xi − xπ(i)‖

2 +
∑

i ◦-π-◦ j

V (xi,xπ(i),xj ,xπ(j)).

(6.1.2)

An unpublished computation of Ueltschi and Betz shows that, for two-cycles, the jump-pair interaction
(equation 4.13.2) simplifies significantly to

V (xi,xπ(i),xπ(i),xi) =
2a

‖xi − xπ(i)‖
+O(a2), (6.1.3)

where a is the radius of the interparticle hard-core potential U .

The key point is that the Brownian bridges of equation 4.13.2 have been simplified out completely for this
two-cycle-interaction model. To estimate expectations of the random variable ̺m,n (section 3.1), one may
simply use Markov-Chain Monte Carlo techniques to sample random permutations with weights derived from
equation 6.2.1. (The details of such MCMC simulations will be explained in my dissertation.)

6.2 Hamiltonian with r2(π)

Equation 6.1.3 is quite adequate for use in Monte Carlo simulations. A further modification is made,
though, which facilitates the computation of thermodynamic properties of the two-cycle-interaction model
in the following section.

30



Letting r2(π) denote the number of two-cycles in the permutation π, one would like to have a simple
Hamiltonian of the form

H
(α)
P (X, π) =

N∑

i=1

1

4β
‖xi − xπ(i)‖

2 + αr2(π). (6.2.1)

It remains to connect the old parameter a with the new parameter α. Note that the distance dependence
in equation 6.1.3 needs to be averaged out: in equation 6.2.1, all two-cycles acquire the same weight α
regardless of ‖xi − xπ(i)‖.

Proposition 6.2.2. The first-order approximation

α =

(
8

πβ

)1/2

a+O(a2) (6.2.3)

is valid for computing expectations.

Proof. It may seem odd that the distances ‖xi − xj‖ are replaced by a common α. Remember, however,
that (see section 3.1) we are averaging over particle positions xi,xj ∈ Λ. Equating the two Hamiltonians in
6.1.2, we have

∫

ΛN

dX exp

{

−
1

4β

N∑

i=1

‖xi − xπ(i)‖
2

}

exp






−
∑

i ◦-π-◦ j

V (xi,xπ(i),xj ,xπ(j))







=

∫

ΛN

dX exp

{

−
1

4β

N∑

i=1

‖xi − xπ(i)‖
2

}

exp






−
∑

i ◦-π-◦ j

α







∫

ΛN

dX
N∏

i=1

exp

{

−
1

4β
‖xi − xπ(i)‖

2

}
∏

i ◦-π-◦ j

exp
{
−V (xi,xπ(i),xj ,xπ(j))

}

=

∫

ΛN

dX

N∏

i=1

exp

{

−
1

4β
‖xi − xπ(i)‖

2

}
∏

i ◦-π-◦ j

exp {α} .

By Tonelli’s theorem (given the positivity of the integrand) we may iterate the integrals as we wish. All i’s
which do not participate in two-cycles factor out, canceling on both sides. Since π(i) = j and π(j) = i, and
substituting expression 6.1.3 for V , we are left with

∏

i ◦-π-◦ j

∫

Λ

∫

Λ

dxi dxj exp

{

−
1

2β
‖xi − xj‖

2

}

exp

{

−
2a

‖xi − xj‖

}

=
∏

i ◦-π-◦ j

∫

Λ

∫

Λ

dxi dxj exp

{

−
1

2β
‖xi − xj‖

2

}

exp {−α} .

It suffices to apply the same technique to each i ◦-π-◦ j pair. Let

rij = xi − xj .

As in section 4.12, the change-of-variables Jacobian has determinant with absolute value 1, so without need
for correction factors we write

∫

Λ

∫

Λ

dxi drij exp

{

−
1

2β
‖rij‖

2

}

exp

{

−
2a

‖rij‖

}

=

∫

Λ

∫

Λ

dxi drij exp

{

−
1

2β
‖rij‖

2

}

exp {−α} .
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Taylor-expanding exp(−2a/‖rij‖) and exp(−α) to first order, since we are interested in weak interactions,
gives us

∫

Λ

∫

Λ

dxi drij exp

{

−
1

2β
‖rij‖

2

}(

1 −
2a

‖rij‖

)

=

∫

Λ

∫

Λ

dxi drij exp

{

−
1

2β
‖rij‖

2

}

(1 − α) .

After distributing the exponentials over the differences, the first products are Gaussians which cancel out on
both sides. What is left is

2a

∫

Λ

∫

Λ

dxi drij

exp
{

− 1
2β‖rij‖

2
}

‖rij‖
= α

∫

Λ

∫

Λ

dxi drij exp

{

−
1

2β
‖rij‖

2

}

.

The integral over dxi gives the volume of Λ on both sides, which cancels; for drij , we pass from Λ to R
3,

ignoring boundary corrections which will disappear in the infinite-volume limit. The right-hand integral over
drij is (2πβ)3/2 (section C.1). Then

α =
2a

(2πβ)3/2

∫

R3

dr
exp

{

− 1
2β ‖r‖

2
}

‖r‖

=
2a

(2πβ)3/2

∫ θ=2π

θ=0

dθ

∫ φ=π

φ=0

dφ sinφ

∫ r=∞

r=0

dr re−r2/2β

=
8πa

(2πβ)3/2

∫ r=∞

r=0

dr r e−r2/2β

=
8πβa

(2πβ)3/2
=

(
8

πβ

)1/2

a.

(The r integral really should start at r = 2a rather than r = 0, since we have a hard-core potential which

prohibits xi from being within 2a of xj . This would introduce a factor of e−2a2/β into the above. In the
small-a regime, though, we set this to 1 without remorse.)

6.3 Pressure

Here we find the pressure of the two-cycle-interaction model and compare it to the pressure of the ideal gas.
The latter is [BU07]:

p(0)(β, µ) = −
1

β

∫

Rd

log
(

1 − e−β(4π2‖k‖2−µ)
)

dk. (6.3.1)

(The chemical potential µ is defined in section B.1.

Proposition 6.3.2. The pressure of the two-cycle-interaction model is

p(α)(β, µ) = p(0)(β, µ) −
e2βµ

211/2π3/2β5/2
(1 − e−α). (6.3.3)

Proof. See section 7.1 of [BU07], or section 5 of [U07]. The proof involves a lengthy decomposition into
Fourier modes; I will exposit it as time permits.
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6.4 Conjecture for the critical density

Recall from section B.5 (see also equation 3.2.1) that the critical density for the ideal Bose gas is

ρ(0)
c =

∫

Rd

dk

e4βπ2|k|2 − 1
. (6.4.1)

As I continue to work on this random-cycle project, I certainly have more to learn about thermodynamics.
In particular, one might inquire why the partial derivative in the following proposition defines the critical
density. ([Huang] approaches the subject from a different perspective than Ueltschi does.) The best I can
say at present is:

• The chemical potential is defined to be change in energy per additional particle, with fixed volume and
entropy, i.e. µ = (∂E/∂N)S,V .

• Particles in the ground state (condensed particles) contribute nothing to the pressure.

Proposition 6.4.2. The critical density for the two-cycle-interaction model is

ρ(α)
c =

∂p(α)

∂µ

∣
∣
∣
∣
∣
µ=0−

= ρ(0)
c −

(1 − e−α)

29/2π3/2β3/2
. (6.4.3)

Proof. Differentiating equation 6.4.3 through the integral sign, we obtain

∂p

∂µ
= −

1

β

∂

∂µ

[∫

Rd

log
(

1 − e−4π2β‖k‖2

eβµ
)

dk

]

−
∂

∂µ

[
e2βµ

211/2π3/2β5/2
(1 − e−α)

]

= −
1

β

∫

Rd

−βe−4π2β‖k‖2

eβµ

1 − e−4π2β‖k‖2eβµ
dk −

2βe2βµ

211/2π3/2β5/2
(1 − e−α)

∂p

∂µ

∣
∣
∣
µ=0−

=

∫

Rd

e−4π2β‖k‖2

1 − e−4π2β‖k‖2 dk −
(1 − e−α)

29/2π3/2β3/2

=

∫

Rd

dk

e4π2β‖k‖2 − 1
−

(1 − e−α)

29/2π3/2β3/2
.

As is familiar from real analysis, differentiation through the integral sign is justified since (i) the integrand
is k-integrable for all µ < 0, and (ii) the integrand has continuous partial derivative with respect to µ.

Conjecture 6.4.4. Infinite cycles occur for densities above ρc.

Note that the critical density can be computed; what is not proved is that it corresponds to infinite cycles.
The following, weaker result has been proved in [BU07].

Theorem 6.4.5. For all b < 1,

lim
V →∞

EΛ,N

(
̺Nb,N

)
≥ ρ−

4

(1 + e−α)2
ρ(0)

c

where the limit is taken with fixed ratio ρ = N/V .

Compare this to equation 3.2.4 of section 3.2: the ρc in ρ − ρc acquires the scale factor 4/(1 + e−α)2, and
we have only a lower bound.

Late note: A theorem of this type has been proved in the recent paper [BU08].
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6.5 Shift in critical temperature

Proposition 6.5.1. For the weakly interacting two-cycle model,

T
(a)
c − T

(0)
c

T
(0)
c

≈ 0.37ρ1/3a.

Proof. Recall from section 2.3, and in particular figure 1, that the critical region may be seen as a manifold
in (ρ, β, a) space. We will use the result

∂a

∂ρ

∂ρ

∂β

∂β

∂a
= −1

from proposition C.4.1. (Since we are working on the critical manifold, we take ρ and β to mean ρ
(a)
c and

β
(a)
c , respectively.) From equation 3.2.3, the critical line, with a = 0, has equation

ρ(0)
c β(0)

c

3/2
=

ζ(3/2)

(4π)3/2
(6.5.2)

where ζ(z) is the Riemann zeta function.

First, we use proposition 6.4.2 for the critical density, then Taylor-expand in the small parameter α and use
equation 6.2.3 to relate α and a:

ρ(a)
c = ρ(0)

c −
1 − e−α

(8πβ)3/2

ρ
(a)
c − ρ

(0)
c

ρ
(0)
c

≈
−α

(8πβ)3/2

(4πβ)3/2

ζ(3/2)
=

−81/2a

π1/2β1/2(8πβ)3/2

(4πβ)3/2

ζ(3/2)
=

−a

π1/2β1/2ζ(3/2)
.

Letting

b =
1

ζ(3/2)π1/2
(6.5.3)

for brevity, we have

ρ
(a)
c − ρ

(0)
c

ρ
(0)
c

= −
ba

β1/2
.

Then

a =
−ρ

(a)
c β1/2

ρ
(0)
c b

+
β1/2

b

and

∂a

∂ρ
=

−β1/2

ρ
(0)
c b

.

Second, using equation 6.5.2,

ρ(0)
c =

ζ(3/2)

(4πβ)3/2
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and so

∂ρ
(0)
c

∂β
=

−ζ(3/2)

(4πβ)3/2
.

For small a (see figure 1 for intuition) we use the approximation

∂ρ
(a)
c

∂β
≈
∂ρ

(0)
c

∂β
.

Third, from section 2.3 we expect

T
(a)
c − T

(0)
c

T
(0)
c

= cρ1/3a.

Putting β = 1/T gives

β
(a)
c − β

(0)
c

β
(a)
c

= −cρ1/3a

which we approximate by

β
(a)
c − β

(0)
c

β
(0)
c

= −cρ1/3a.

Solving for β
(a)
c gives

β(a)
c = β(0)

c − β(0)
c cρ1/3a

and thus

∂β

∂a
= −β(0)

c cρ1/3.

Combining the product of all three partial derivatives and using proposition C.4.1, we have

(

β1/2

ρ
(0)
c b

)(
ζ(3/2)

(4πβ)3/2

)(

β(0)
c cρ1/3

)

= 1.

Solving for c gives

c =
ρ
(0)
c ρ−1/3β5/2

β
(0)
c β1/2

2b (4π)3/2

3 ζ(3/2)
.

Approximating β
(0)
c and ρ

(0)
c by β

(a)
c and ρ

(a)
c , we have

c =
(

ρ2/3β
) 2b (4π)3/2

3 ζ(3/2)
=
(

ρβ3/2
)2/3 2b (4π)3/2

3 ζ(3/2)
.

From equation 6.5.2 we know that

ρ(0)
c β3/2 =

ζ(3/2)

(4π)3/2
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which we apply to ρ
(a)
c as well. Then

c =

(
ζ(3/2)

(4π)3/2

)2/3
2b (4π)3/2

3 ζ(3/2)
=

(
ζ(3/2)2/3

(4π)

)
2b (4π)3/2

3 ζ(3/2)
=

4b π1/2

3 ζ(3/2)1/3
.

Since

b =
1

ζ(3/2)π1/2
,

c =
4

3
ζ(3/2)−4/3 ≈ 0.37.

Remark. This result applies for the two-cycle model, where the only permutation jumps that interact are
those which participate in two-cycles. When longer cycles are included, the shift in critical temperature
is expected to be more pronounced. Thus, this result provides a rough lower bound on the true constant
c, which from other methods discussed in section 2.3 is believed to be approximately 1.3. Further work
is needed (see the following section) before the random-cycle model can be used to improve on the latter
estimate.
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7 Future work

7.1 Theoretical directions

My research to date has shown that the full jump-pair interaction (see equation 4.13.2 and section 5) is too
computationally intensive for practical use. Ueltschi and Betz have simplified the Brownian bridges out of the
jump-pair interaction for the particular case of two-cycles (equation 6.1.3); they also have some unpublished
work on approximating the full interaction (to first order in the scattering length a) as a Riemann integral.
I have found that this, too, while better than the Brownian bridges, is still computationally expensive. If
this integral could be represented as a special function, then the full jump-pair-interacting case could be
examined experimentally.

Alternatively, notice that, for the two-cycle-interaction model, the distance dependence in equation 6.1.3
was averaged out in equation 6.2.1. Since we are interested only in expected values of ρm,n, the details of
a particular interaction are of minor importance; only the averaged behavior is of final interest. Perhaps
equation 4.13.2 may be handled in a manner similar to proposition 6.2.2.

A very recent paper of Betz and Ueltschi [BU08] extends the two-cycle Hamiltonian of section 6 (equation
6.2.1) to the form

HP (X, π) =

N∑

i=1

1

4β
‖xi − xπ(i)‖

2 +

N∑

ℓ=1

αℓrℓ(π) (7.1.1)

where rℓ(π) counts the number of ℓ-cycles in the permutation π. I have yet to evaluate how this recent
development affects my own work.

7.2 Numerical directions

Simulations currently underway use the two-cycle-interaction model, with points on a cubic unit lattice. One
would like to vary the positions of the points as well, in order to simulate the point-process-configuration
model. (See the last paragraph of section 3.1 for a description of the probability measures for these two
models.)

Note that the choice between the lattice-configuration and the point-process-configuration models is inde-
pendent of the choice between the two-cycle-interaction and full jump-pair-interaction models.

If the theoretical work outlined in section 7.1 produces an efficient expression for the full jump-pair interac-
tion, then it will certainly be examined experimentially.

7.3 Statistical directions

Markov-chain Monte Carlo simulations compute sample means of ̺m,n (see section 3.1) for the lattice and
point-process probability measures — producing one mean for a given choice of lattice size N , particle density
ρ, inverse temperature β, and interaction parameter a.

We will analyze the error of the resulting sample means. For a large number of trials, one expects a central-
limit distribution for the estimated values of ̺m,n; we also desire to have a practical estimator for the variance
of the sample mean.
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To approach the infinite-volume limit in N , one needs to simulate larger and larger lattice sizes, and then
do finite-size scaling on the results. This analysis, involving a regression of a carefully chosen form with due
sensitivity to sampling errors, will be a central part of my dissertation work.
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A Quantum mechanics

For information on quantum mechanics, see [Griffiths], [NC], and [Sakurai]; see [Huang], [Widom], and
[Pathria] for statistical mechanics. The topics presented here are a digestion of these sources, with unified
vocabulary and notation, serving a single purpose: so that I may explain to myself why Tr

(
e−βH

)
is of such

central importance.

A.1 Postulates of quantum mechanics

I take elementary quantum mechanics as given; in particular, I will use bra-ket notation without explanation.
(I should point out that I take the complex inner product to be linear on the right, in accordance with
mathematical-physics convention.) However, I will recall the basic postulates of quantum mechanics in order
to smoothly elucidate the usefulness of the otherwise mysterious density matrix. In turn, density matrices
are needed to formulate quantum statistical mechanics in section A.8.

(1) To any isolated physical system is associated a separable complex Hilbert space H, called a state space,
with inner product 〈φ | ψ〉. States (pure states; see section A.2) of the physical system are described
by unit vectors (often called state vectors or wave functions) in H, i.e. vectors ψ such that 〈ψ | ψ〉 = 1.
Vectors that are scalar multiples of one another are considered to be equivalent. (If ψ1 = cψ2, then,
since ψ1 and ψ2 have norm 1, |c| = 1. That is, c = eiθ for some real θ. Thus arises the saying that
state vectors are distinct up to a phase factor.) The state space of a composite system is the tensor
product of the state spaces of the component systems.

(2) State vectors evolve in time via unitary transformations. Specifically, the unitary operator is described
by the Schrödinger equation:

i~
∂ψ(t,x)

∂t
=

−~
2

2m
∇2ψ(t,x) + V (t,x)ψ(t,x) = Hψ(t,x)

i.e.
∂ψ

∂t
=

−iH

~
ψ

where H is the Hermitian operator

H =
−~

2

2m
∇2 + V.

The wave function varies in position and time; the potential function, conventionally written with the
letter V , may also vary in position and time. The potential represents external interactions with the
particle.

We can write down a solution

dψ

dt
=

−i

~
Hψ (A.1.1)

ψ(t) = e−iHt/~ψ(0). (A.1.2)

One checks this solution by differentiating:

dψ

dt
=

−iH

~
e−iHt/~ψ(0) =

−iH

~
ψ(t) =

−i

~
Hψ(t).

As is well known, the imaginary exponential of a hermitian matrix is unitary. The importance of this
is that unitary matrices U are norm-preserving. That is, if ‖ψ‖ = 1 then ‖Uψ‖ is still 1; probability-
density functions remain probability-density functions as they evolve in time. This fact is called the
conservation of probability.
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(3) An observable O corresponds to a densely defined Hermitian operator A : H → H. Since A is
Hermitian, H has an orthonormal basis {φj} of eigenvectors of A. Since H is separable, the basis
is a countable set. In the case that A has discrete spectrum, the eigenstates of A have respective
(necessarily real) eigenvalues aj and A has a spectral decomposition

A =
∑

aj | φj 〉〈φj |

(The operators Pj =| φj 〉〈φj | are known as projection operators.) A (necessarily square-summable)
wave function ψ is a linear combination of the eigenbasis:

ψ =
∑

j

cjφj with cj = 〈φj | ψ〉 and
∑

j

|cj |
2 = 1.

A measurement of O has as its possible outcomes the numbers aj with probabilities

P(O = aj) = |〈φj | ψ〉|2.

The expected value of A is

〈A 〉 =
∑

j

ajP(O = aj) =
∑

j

aj |〈φj | ψ〉|2 =
∑

j

aj〈ψ | φj〉〈φj | ψ〉

=
∑

j

aj〈ψ |

(

| φj 〉〈φj |

)

| ψ 〉 =
∑

j

〈ψ |

(

aj | φj 〉〈φj |

)

| ψ 〉

= 〈ψ | A | ψ〉.

This is the average value or mean of all the observations, averaged over repeated measurements on
identical systems.

(4) Immediately after measurement of an observable O, the state of the system is described only by an
eigenstate φj of A. This is called the collapse of the wave function. The evolution of the single-particle
system thereafter is described by the Schrödinger equation, with new initial conditions.

A.2 Pure and mixed states

The terms pure state and mixed state are horribly misleading. Nonetheless, they are entrenched in the
literature and cannot be dispensed with. A pure state is simply a state of a quantum-mechanical system:
the adjective pure is superfluous. A mixed state not a single state at all: it is a statistical description of a
set of many states.

Definition A.2.1. An ensemble is a list of n distict state vectors {ψ1, . . . , ψn} along with respective
probabilities {p1, . . . , pn} with 0 ≤ pj ≤ 1 and

∑n
j=1 pj = 1. (One may think of an ensemble as a probability

mass function.)

Definition A.2.2. A mixed state is an ensemble. A pure state is (with abuse of notation) either a single
state, or an ensemble with n = 1, or an ensemble with n ≥ 1 but only one pk = 1 and the remaining pj = 0
for j 6= k.

Remark. Pure and mixed states are not to be confused with the following:

• A quantum-mechanical state is a linear combination of eigenstates. Such states are pure, not mixed.

• Entangled and separable states arise in the theory of multi-particle systems, e.g. the tensor product
H1 ⊗H2 of Hilbert spaces H1 and H2. An entangled state is an indecomposable tensor in H1 ⊗H2; a
separable state is a decomposable tensor.
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A.3 Density matrices

Density matrices are a notational convenience for working with ensembles (mixed states) of quantum sys-
tems. I will develop3 density matrices in three steps: (1) In this section, I will show how to construct a
density matrix from an ensemble. (2) In section A.4, I will show how density matrices serve to notationally
encapsulate the postulates of quantum mechanics as described in section A.1. (3) In section A.5 I will show
how this notation permits one to extend those postulates to the mixed-state case.

Definition A.3.1. A density matrix is a positive-definite matrix with trace 1.

Proposition A.3.2. A density matrix may be obtained from an ensemble by

ρ =

n∑

j=1

pj | ψj 〉〈ψj | .

Proof. Let ρ be such a matrix. Fix an orthonormal basis {φi} for H. I will use the characterization that
a matrix A is positive-definite iff it is Hermitian and 〈ξ | A | ξ〉 > 0 for all non-zero ξ. To see that ρ is
Hermitian, write

ρ∗ =





n∑

j=1

pj | ψj 〉〈ψj |





∗

=

n∑

j=1

pj (| ψj 〉〈ψj |)
∗

=

n∑

j=1

pj〈ψj |∗| ψj 〉
∗ =

n∑

j=1

pj | ψj 〉〈ψj |= ρ.

Now let 0 6= ξ ∈ H. Then

〈ξ | ρ | ξ〉 =

〈

ξ

∣
∣
∣
∣
∣

n∑

j=1

pj | ψj 〉〈ψj |

∣
∣
∣
∣
∣
ξ

〉

=
n∑

j=1

pj〈ξ | ψj〉〈ψj | ξ〉 =
n∑

j=1

pj〈ξ | ψj〉〈ξ | ψj〉
∗ =

n∑

j=1

pj|〈ξ | ψj〉|
2.

Since this is a sum of non-negative real numbers, it is non-negative. But by positive-definiteness of the inner
product, it is zero iff either ξ is zero, which it is not by hypothesis, or all of the ψj ’s are zero, which they
are not since they all have norm 1.

To see that ρ has trace 1, write

Tr(ρ) = Tr

(
n∑

k=1

pk | ψk 〉〈ψk |

)

(A.3.3)

=

n∑

k=1

pkTr (| ψk 〉〈ψk |) . (A.3.4)

Write each ψk in terms of the orthonormal basis as

ψk =
∑

ℓ

ckℓφℓ.

Note that | ψk 〉〈ψk | has ijth matrix element

(| ψk 〉〈ψk |)ij = cki c
∗
kj .

Then
Tr (| ψk 〉〈ψk |) =

∑

i

cki c
∗
ki =

∑

i

|cki|
2 = 1,

3This development follows, in part, that in http://electron6.phys.utk.edu/QM1, retrieved on June 12, 2008.
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from which

Tr(ρ) =

n∑

k=1

pk = 1.

Furthermore, we have a criterion for whether a density matrix corresponds to a pure or mixed state.

Proposition A.3.5. If ρ is a density matrix for an ensemble {ψ1, . . . , ψn}, then Tr(ρ2) ≤ 1, with equality
if and only if the ensemble is a pure state.

Proof. First note that for a matrix A, we have

Tr(A2) =
∑

i

∑

j

AijAji.

Then

Tr(ρ2) =
∑

i

∑

j

ρijρji

=
∑

i

∑

j

(
n∑

k=1

pkckic
∗
kj

)(
n∑

ℓ=1

pℓcℓjc
∗
ℓi

)

=

n∑

k=1

pk

n∑

ℓ=1

pℓ

∑

i

(c∗ℓicki)
∑

j

(
c∗kjcℓj

)

=

n∑

k=1

pk

n∑

ℓ=1

pℓ 〈ψℓ | ψk〉〈ψk | ψℓ〉

=

n∑

k=1

pk

n∑

ℓ=1

pℓ 〈ψk | ψℓ〉
∗〈ψk | ψℓ〉

=

n∑

k=1

pk

n∑

ℓ=1

pℓ |〈ψk | ψℓ〉|
2.

First suppose that one pk0 is 1 and the rest are zero. (This is the pure case.) Then

Tr(ρ2) = |〈ψk0 | ψk0〉|
2 = 1.

Now suppose that at least two pk’s are non-zero. Decompose the sum as

Tr(ρ2) =
n∑

k=1

p2
k|〈ψk | ψk〉|

2 +
n∑

k=1

pk

∑

ℓ 6=k

pℓ |〈ψk | ψℓ〉|
2

=

n∑

k=1

p2
k +

n∑

k=1

∑

ℓ 6=k

pkpℓ |〈ψk | ψℓ〉|
2.

To finish the proof, note that
∑n

k=1 p
2
k is the diagonal part of (

∑n
k=1 pk)2. We have

1 = (1)2 =

(
n∑

k=1

pk

)2

=

n∑

k=1

n∑

ℓ=1

pkpℓ =

n∑

k=1

∑

ℓ 6=k

pkpℓ +

n∑

k=1

p2
k

n∑

k=1

p2
k = 1 −

n∑

k=1

∑

ℓ 6=k

pkpℓ.
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Then

Tr(ρ2) = 1 −

n∑

k=1

∑

ℓ 6=k

pkpℓ(1 − cos2 θkℓ)

where
〈ψk | ψℓ〉 = ‖ψk‖ ‖ψℓ‖ cos θkℓ.

Note that all the terms in the sum are non-negative. If two pk’s are non-zero — without loss of generality,
say p1 and p2 — then the product p1p2 is non-zero. Furthermore, cos2 θ1,2 is strictly less than 1. Otherwise,
φ1 and φ2 (which are unit vectors) would be identical up to global phase, contradicting the distinctness of
the members of the ensemble. Thus, Tr(ρ2) < 1.

Remark A.3.6. Two different ensembles can give the same density matrix. In [NC] is a theorem charac-
terizing the conditions under which this can happen.

Lastly, we have two lemmas which will be used in section A.4.

Lemma A.3.7. The operator ρ is Hermitian. If ρ =| ψ 〉, then ρ satisfies ρ2 = ρ.

Proof. For the first claim,

ρ∗ =

(
∑

k

pk | ψk 〉〈ψk |

)∗

=
∑

k

pk〈ψk |∗| ψk 〉
∗ =

∑

k

pk | ψk 〉〈ψk |= ρ.

For the second claim,

ρ2 =| ψ 〉〈ψ | ψ〉 | ψ 〉 =| ψ 〉〈ψ |= ρ

since 〈ψ | ψ〉 = 1.

Lemma A.3.8. For a Hermitian operator A,

〈ψ | A | ψ〉 = Tr(A | ψ 〉〈ψ |).

Proof. The operator ρ =| ψ 〉〈ψ | is Hermitian by lemma A.3.7, so it makes sense to write 〈ψ | A | ψ〉.
Expand ψ in terms of an orthonormal basis {φj} for H as

ψ =
∑

j

cjφj .

Recall that
〈ψ | A | ψ〉 =

∑

ik

c∗iAikck.

On the other hand, for matrices C and D,

(CD)ij =
∑

k

CikDkj and Tr(CD) =
∑

ik

CikDki,

so

Tr(A | ψ 〉〈ψ |) =
∑

ik

Aikckc
∗
i = 〈ψ | A | ψ〉.
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A.4 Pure-state density matrices

For this section, fix a state ψ and let
ρ =| ψ 〉〈ψ | .

Here, four key properties of the density matrix ρ are described, paralleling the four postulates of quantum
mechanics listed in section A.1.

(1) The state vector ψ has norm 1. The density matrix ρ has trace 1, as proved in proposition A.3.2.

(2) The state vector ψ evolves in time according to the Schrödinger equation

dψ

dt
=

−i

~
Hψ;

the density matrix ρ evolves in time according to

dρ

dt
=

−i

~
[H, ρ]. (A.4.1)

Proof. Using the product rule,

dρ

dt
=
d | ψ 〉

dt
〈ψ | + | ψ 〉

d〈ψ |

dt
.

To find d〈ψ | /dt, take the adjoint of the Schrödinger equation and recall that the Hamiltonian is
Hermitian (so H∗ = H):

(
d | ψ 〉

dt

)∗

=

(
−i

~
H | ψ 〉

)∗

d〈ψ |

dt
=
i

~
〈ψ | H∗ =

i

~
〈ψ | H.

Then

dρ

dt
=

(
−i

~
H | ψ 〉

)

〈ψ | + | ψ 〉

(
i

~
〈ψ | H

)

=
−i

~
Hρ+

i

~
ρH =

−i

~
[H, ρ].

In section A.5 we will find a solution for this equation.

(3) Given an observable O with operator A, eigenstates φj , and corresponding eigenvalues aj , we have

P(O = aj) = |〈φj | ψ〉|2 and 〈A 〉 = 〈ψ | A | ψ〉;

in terms of ρ, we have
P(O = aj) = Tr(ρPj) and 〈A 〉 = Tr(ρA)

where
Pj =| φj 〉〈φj | .

Proof. For the first claim,

P(O = aj) = |〈φj | ψ〉|2 = 〈ψ | φj〉〈φj | ψ〉 = 〈ψ | Pj | ψ〉 = Tr(ρPj),

where the last step follows from the centrality of trace, along with lemma A.3.8. The second claim also
follows from the lemma.

(4) After measurement of the observable O with operator A, the state vector ψ is replaced by an eigenstate
φj . The density matrix | ψ 〉〈ψ | is replaced by | φj 〉〈φj |.
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A.5 Mixed-state density matrices

Now we suppose

ρ =
∑

k

pk | ψk 〉〈ψk |,

and we enumerate the postulates of quantum mechanics in terms of the density matrix ρ.

(1) The density matrix ρ has trace 1, as proved in proposition A.3.2.

(2) The density matrix ρ evolves in time according to

dρ

dt
=

−i

~
[H, ρ]. (A.5.1)

Proof. Using the product rule,

dρ

dt
=
∑

k

pk
d | ψk 〉

dt
〈ψk | +

∑

k

pk | ψk 〉
d〈ψk |

dt
.

As in section A.4,
(
d | ψk 〉

dt

)∗

=
i

~
〈ψk | H,

so

dρ

dt
=
∑

k

pk

(
−i

~
H | ψk 〉

)

〈ψk | +
∑

k

pk | ψk 〉

(
i

~
〈ψk | H

)

=
−i

~

∑

k

Hpk | ψk 〉〈ψk | +
i

~

∑

k

pk | ψk 〉〈ψk | H

=
−i

~
Hρ+

i

~
ρH =

−i

~
[H, ρ].

Furthermore, if wave functions evolve by a unitary operator Ut via

ψt = Utψ0,

then the density matrix evolves via
ρt = Utρ0U

∗
t .

In particular, if the Hamiltonian is time-independent, we have

ρt = e−iHt/~ρ0e
iHt/~. (A.5.2)

One verifies by differentiation that A.5.2 solves A.5.1.

(3) Given an observable O with operator A, eigenstates φj , and corresponding eigenvalues aj ,

P(O = aj) = Tr(ρPj) and 〈A 〉 = Tr(ρA)

where
Pj =| φj 〉〈φj | .
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Proof. For the first claim, let Ok be the observation of ψk. Using conditional probability, recalling
result 3 from section A.4, and using linearity of trace, we have

P(O = aj) =
∑

k

pk P(Ok = aj)

=
∑

k

pk Tr (| ψk 〉〈ψk | Pj)

= Tr

(
∑

k

pk | ψk 〉〈ψk | Pj

)

= Tr

((
∑

k

pk | ψk 〉〈ψk |

)

Pj

)

= Tr(ρPj).

Similarly, for the second claim we have

〈A 〉 =
∑

k

pk〈Ak 〉

=
∑

k

pkTr (| ψk 〉〈ψk | A)

= Tr

(
∑

k

pk | ψk 〉〈ψk | A

)

= Tr(ρA).

(4) After measurement of the observable O with operator A, the density matrix ρ is replaced by
∑

j

PjρPj .

Proof. First,

∑

j

PjρPj =
∑

j

(| φj 〉〈φj |)

(
∑

k

pk | ψk 〉〈ψk |

)

(| φj 〉〈φj |)

=
∑

jk

pk | φj 〉〈φj | ψk〉〈ψ | φj〉〈φj |

=
∑

jk

pk | φj 〉|〈φj | ψ〉|2〈φj |

=
∑

jk

pk|ckj |
2 | φj 〉〈φj | .

On the other hand, from result 4 in section A.4 we know that each state ψk collapses to eigenstate φj

with probability
|ckj |

2 = |〈φj | φk〉|
2.

Thus, again using conditional probability, the post-measurement ensemble should be described by
pure-state density matrices | φj 〉〈φj | with probabilities pk|ckj |

2, i.e.
∑

jk

pk|ckj |
2 | φj 〉〈φj |=

∑

j

PjρPj .
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A.6 Additional properties of density matrices

Lemma A.6.1. If {φj} is an orthornomal basis for H, then

∑

j

| φj 〉〈φj |= I.

Proof. Take an arbitrary vector ψ ∈ H. Expanded in terms of the basis, this is

ψ =
∑

j

cjφj

where
cj = 〈φj | ψ〉.

Then



∑

j

| φj 〉〈φj |



 | ψ 〉 =
∑

j

| φj 〉〈φj | ψ〉 =
∑

j

| φj 〉cj = ψ = Iψ.

Lemma A.6.2. Eigenvectors of a self-adjoint operator H are eigenvectors of e−βH. That is, if Hφj = Ejφj

then
e−βHφj = e−βEjφj .

Proof. This may be justified formally by using the Taylor expansion for the operator exponential:

e−βHφj =
∞∑

k=0

(−β)kHkφj

k!
=

∞∑

k=0

(−β)kEk
j φj

k!
= e−βEjφj .

A.7 Trace in coordinates

With respect to a basis {φi}, A has matrix element Aij

Aij = 〈φi | A | φj〉.

Then

Tr(A) =
∑

i

Aii =
∑

i

〈φi | A | φi〉. (A.7.1)

If {φi} is an orthonormal eigenbasis for A, with respective eigenvalues {λi}, then

Tr(A) =
∑

i

〈φi | λi | φi〉 =
∑

i

λi〈φi | φi〉 =
∑

i

λi.

Likewise, using lemma A.6.2,

Tr
(
e−βH

)
=
∑

i

〈φi | e
−βH | φi〉 =

∑

i

〈φi | e
−βEi | φi〉 =

∑

i

e−βEi〈φi | φi〉 =
∑

i

e−βEi.
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A.8 Density matrix for the canonical ensemble

Here we work out the density matrix for the canonical ensemble. The pj ’s of proposition A.3.2 are

pj =
e−βEj

Z
.

with Z being a to-be-determined normalization factor that makes
∑

j pj = 1. The φj ’s are eigenstates of the
Hamiltonian with respective eigenvalues Ej . Then

ρ =
1

Z

∑

j

e−βEj | φj 〉〈φj |=
1

Z

∑

j

e−βH | φj 〉〈φj |=
1

Z
e−βH

∑

j

| φj 〉〈φj |=
1

Z
e−βH .

by lemmas A.6.1 and A.6.2.

It is now clear what the partition function Z is: since trace is linear, for a trace-class operator A we have

Tr

(
A

Tr(A)

)

=
Tr(A)

Tr(A)
= 1.

Thus, to normalize ρ (see property 1 in section A.5),

Z = Tr
(
e−βH

)

so

ρ =
e−βH

Tr (e−βH)
.

Then property (3) of section A.5 becomes

〈A 〉 =
Tr
(
Ae−βH

)
)

Tr (e−βH)
.
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B Thermodynamics

Here I collect certain facts about thermodynamics, gleaned from [BU07, U07, LSSY, Huang]. In particular,
I note here questions which I would like to resolve to my own satisfaction during my dissertation work.

B.1 Chemical potential

The chemical potential µ of a collection of particles is the change in energy that results when a particle
is added to the system:

dE = µdN.

B.2 Grand-canonical partition function; Fourier space

The partition function N in section 3.1 is what is known as a canonical partition function: it involves
a fixed particle number N . In statistical mechanics, one also considers a grand-canonical partition

function, defined as

Ξ(β,Λ, µ) =
∑

N≥0

eβµNZ(N).

For the two-cycle-interaction model of section 6, we have

Ξ(β,Λ, µ) =
∑

N≥0

eβµN

N !

∑

π∈SN

∫

ΛN

dX e−H(α)(X,π)

=
∑

N≥0

eβµN

N !

∑

π∈SN

∫

ΛN

dX exp

{

−
1

4β

N∑

i=1

‖xi − xπ(i)}
2

}

exp {−αr2(π)}

=
∑

N≥0

eβµN

N !

∑

π∈SN

exp {−αr2(π)}

∫

ΛN

dX

N∏

i=1

exp

{

−
1

4β
‖xi − xπ(i)‖

2

}

.

One may write down a grand-canonical partition function in momentum space rather than in position space:
one transforms the x coordinates into k coordinates. For the two-cycle-interaction model of section 6, we
have

X̂i(β,Λ, µ) =
∑

N≥0

eβµN

N !

∑

π∈SN

exp {−αr2(π)}
∑

k1,...,kN∈Λ∗

N∏

i=1

exp
{
−4π2β‖ki‖

2
}
δki,kπ(i)

.

An item to be merged into this discussion is the occupation number. Huang, p. 112 [Huang], derives the
occupation number for the kth state to be

nk =
eβµ

eβEk − eβµ
=

1

eβ(Ek−µ) − 1
.

B.3 Free energy

The free energy is defined in several ways.
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In [LSSY], we have

F = −
1

β
logZ.

In [U07], the free energy is taken to be the Legendre transform of the pressure:

f (α)(β, ρ) = sup
µ

[

ρµ− p(α)(β, µ)
]

.

B.4 Pressure

[Huang] (p. 111) obtains the pressure of the Bose gas from first principles. He sums the momentum
distribution for the Bose gas, with pressure in terms of particle flux on the wall of a container.

p =
2

3

∫

R3

d3k

8π3

Ek

eβ(Ek−µ) − 1
.

[LSSY] define the pressure in terms of a partial derivative involving the free energy:

p = −
∂F

∂V
= ρkBT.

[U07] uses

p = lim
V →∞

1

βV
logZ(β,Λ, µ).

B.5 Density for the Bose gas

[LSSY] (p. 3) declare

ρ =
1

h3

∫
dk

eβ(Hk−µ) − 1
.

[Huang] (p. 111) has

ρ =
1

2π2

∫ ∞

0

dk
k2

eβ(Hk−µ) − 1
.

[U07] uses

ρ(α)
c =

∂p(α)

∂µ

∣
∣
∣
∣
∣
µ=0−

which yields (equations 6.4.1 and 6.4.3)

ρ(α)
c =

∂p(α)

∂µ

∣
∣
∣
∣
∣
µ=0−

= ρ(0)
c −

(1 − e−α)

29/2π3/2β3/2

ρ(0)
c =

∫

Rd

dk

e4βπ2|k|2 − 1
.

It appears that

ρ =
∂p

∂µ
and ρc =

∂p

∂µ

∣
∣
∣
∣
∣
µ=0−

.
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C Analysis results

The results here are standard — see, for example, [HN]. They are collected here for ready reference, using
notation which is consistent with the rest of the paper. Most of the items here are elaborations on the
sketches provided in [Faris], or justifications of it-can-be-shown statements in [U07].

Importantly, here I identify some otherwise-surprising factors of 2 which appear in this paper as well as in
[U07] and [BU07]: the generator of Brownian motion is ∇2/2, but throughout the present work, H = −∇2.

C.1 Gaussians

Definition C.1.1. For x ∈ R
d, let

gt(x) =
1

(2πt)d/2
e−|x|2/2t.

Then gt(x − a) is a standard Gaussian, with integral 1, having mean a and variance t in each component.

Proposition C.1.2. The family of gt’s satisfies a Chapman-Kolmogorov equation:

∫

Rd

gs(x − z)gt(z − y) dz = gs+t(x − y).

Proof. This follows (albeit messily) by completing the square.

The following proposition is used for the definition of normalized Brownian bridges in section D.6, as well
as for the simplified jump-pair interaction in section 4.12.

Proposition C.1.3.

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

gt1(x − z1)gt2(z1 − z2) · · · gtn−1(zn−2 − zn−1)gtn
(zn−1 − y)

dz1 dz2 · · · dzn−2 dzn−1

= gt1+···+tn
(x − y).

Proof. Use induction, iterating the integrals and applying proposition C.1.2.

The following lemma is used in the proof of proposition 4.12.1 in section 4.12.

Lemma C.1.4.

g2t(a1 − a2) g2t(b1 − b2) = g4t ((a1 − b1) − (a2 − b2)) gt

(

a1 − a2 −
1

2
(a1 − b1) +

1

2
(a2 − b2)

)

= g4t ((a1 − b1) − (a2 − b2)) gt

(
(a1 − a2) + (b1 − b2)

2

)

.

Proof. From definition C.1.1, the left-hand side is

1

(4πt)d
exp

{

−
1

4t

(
‖a1 − a2‖

2 + ‖b1 − b2‖
2
)
}

.
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The right-hand side is

1

(8πt)d/2

1

(2πt)d/2
exp

{

−
1

8t
‖(a1 − b1) − (a2 − b2)‖

2

}

exp

{

−
1

2t

∥
∥
∥
∥
a1 − a2 −

(a1 − b1)

2
+

(a2 − b2)

2

∥
∥
∥
∥

2
}

=
1

(4πt)d
exp

{

−
1

8t
‖(a1 − b1) − (a2 − b2)‖

2

}

exp

{

−
1

2t

∥
∥
∥
∥

a1

2
−

a2

2
+

b1

2
−

b2

2

∥
∥
∥
∥

2
}

=
1

(4πt)d
exp

{

−
1

8t
‖(a1 − a2) − (b1 − b2)‖

2

}

exp

{

−
1

8t
‖(a1 − a2) + (b1 − b2)‖

2

}

.

Since the scale factors are the same, it remains to show that

2‖a1 − a2‖
2 + 2‖b1 − b2‖

2 = ‖(a1 − a2) − (b1 − b2)‖
2 + ‖(a1 − a2) + (b1 − b2)‖

2.

To see this, let
u = a1 − a2 and v = b1 − b2.

Then we only need to show

2‖u‖2 + 2‖v‖2 = ‖u− v‖2 + ‖u + v‖2.

But this follows immediately since

‖u± v‖2 = ‖u‖2 ± 2u · v + ‖v‖2.

The following corollary is also used in the proof of proposition 4.12.1 in section 4.12. It is nothing more than
a relabeling of lemma C.1.4, with

a1 7→ x1, a2 7→ y1, b1 7→ x2, and b2 7→ y2.

Corollary C.1.5.

g2t(x1 − y1) g2t(x2 − y2) = g4t ((x1 − x2) − (y1 − y2)) gt

(
(x1 − y1) + (x2 − y2)

2

)

= g4t ((x1 − x2) − (y1 − y2)) gt

(
(x1 + x2) − (y1 + y2)

2

)

.

C.2 e
−βH0 as a convolution operator

We seek to write e−βH0 as a convolution operator, where H0 is a scaled Laplacian. Faris includes the

arbitrary scale factor σ2 in H0 = −σ2

2 ∇2; we simply need to choose σ2 = 2 to fit the present application,
then adapt the resulting scale factors to the standard Gaussian notation found in definition C.1.1.

Additionally, we will use σ2/2 = β/n in sections E.1 and 4.2.

In the following table, F denotes the Fourier transform; Fβ and F̂β denote a Gaussian and its Fourier
transform as defined by Faris; g and ĝ are as in definition C.1.1.
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Arbitrary σ2 σ2 = 1 σ2 = 2

Fβ(x) =
e−|x|2/2σ2β

(2πσ2β)d/2
Fβ(x) =

e−|x|2/2β

(2πβ)d/2
Fβ(x) =

e−|x|2/4β

(4πβ)d/2

= gσ2β(x) = gβ(x) = g2β(x)

F̂β(k) = e−σ2β|k|2/2 F̂β(k) = e−β|k|2/2 F̂β(k) = e−β|k|2

H0 = −σ2

2 ∇2 H0 = − 1
2∇

2 H0 = −∇2

F
(

−σ2

2 ∇2
)

= σ2

2 |k|2 F
(
− 1

2∇
2
)

= 1
2 |k|

2 F
(
−∇2

)
= |k|2

F
(
e−βH0

)
= Fβ(k) F

(
e−βH0

)
= Fβ(k) F

(
e−βH0

)
= Fβ(k)

(e−βH0f)(x) = (e
σ2β
2 ∇2

f)(x) (e−βH0f)(x) = (e
β
2 ∇2

f)(x) (e−βH0f)(x) = (eβ∇2

f)(x)

= Fβ(x) ∗ f(x) = Fβ(x) ∗ f(x) = Fβ(x) ∗ f(x)

= gσ2β(x) ∗ f(x) = gβ(x) ∗ f(x) = g2β(x) ∗ f(x)

We have used the ∗ notation for the convolution:

g(x) ∗ f(x) = (g ∗ f)(x) =

∫

Rd

g(x − y)f(y) dy.

We now prove the claims tabulated above. The proof is split up into a sequence of lemmas.

Definition C.2.1. Following Faris, we define the Fourier transform and inverse Fourier transform

using the non-unitary angular-frequency conventions for sign and scale. Namely, for f, g : R
d → R which are

in L1 ∩ L2,

(Ff)(k) = f̂(k) =

∫

Rd

f(x)e−ik·x dx. (C.2.2)

(F−1g)(x) =
1

(2π)d

∫

Rd

g(k)e+ik·x dk. (C.2.3)

Lemma C.2.4. The Fourier transform of the one-dimensional t-variance Gaussian (definition C.1.1) is

ĝt(k) = e−tk2/2.

Proof. Complete the square, use translation invariance of the integral, and recognize 1/(2π)1/2 as the integral
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of e−x2/2t:

(Fgt) =
1

(2πt)1/2

∫

R

e−x2/2te−ikx dx

=
1

(2πt)1/2

∫

R

exp

{

−
1

2t
(x2 + 2itkx)

}

dx

=
1

(2πt)1/2

∫

R

exp

{

−
1

2t
(x+ itk)2 −

tk2

2

}

dx

=
e−tk2/2

(2πt)1/2

∫

R

exp

{

−
1

2t
(x+ itk)2

}

dx

=
e−tk2/2

(2πt)1/2

∫

R

exp

{

−
1

2t
x2

}

dx

= e−tk2/2.

Proposition C.2.5. The Fourier transform of the d-dimensional t-variance Gaussian (definition C.1.1) is

ĝt(k) = e−t‖k‖2/2.

Proof. First write

(Fgt) =
1

(2πt)d/2

∫

Rd

e−‖x‖2/2te−ik·x dx

=

(
1

2πt

)d/2 ∫

Rd

(
d∏

ℓ=1

e−x2
j/2te−ikjxj

)

dx.

Since the integrand is non-negative, by Tonelli’s theorem we may iterate the integrals and apply lemma C.2.4
to each.

Lemma C.2.6. Let f : R → R be such that f(x), f ′(x) and f ′′(x) are in L1 ∩ L2 and vanish at ±∞. Then

F

(
d2f

dx2

)

= −k2f̂(k).

Proof. Integrate by parts twice, applying the zero boundary conditions:

F

(
d2f

dx2

)

=

∫

R

d2f

dx2
e−ikx dx = ik

∫

R

df

dx
e−ikx dx = (ik)2

∫

R

f(x)e−ikx dx = −k2f̂(k).

Lemma C.2.7. Let f : R
d → R be such that f and all its first and second partial derivatives are in L1 ∩L2

and vanish at ±∞. Then
F
(
∇2f

)
= −‖k‖2f̂(k).
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Proof. Integrate by parts twice, applying the zero boundary conditions:

F
(
∇2f

)
=

∫

Rd

∇2fe−ik·x dx

=

∫

Rd





d∑

j=1

d2f

dx2
j





(
d∏

ℓ=1

e−ikℓxℓ

)

dx

=
d∑

j=1

∫

Rd

d2f

dx2
j

(
d∏

ℓ=1

e−ikℓxℓ

)

dx

=

d∑

j=1

(ikj)

∫

Rd

df

dxj

(
d∏

ℓ=1

e−ikℓxℓ

)

dx

=

d∑

j=1

(ikj)
2

∫

Rd

f(x)

(
d∏

ℓ=1

e−ikℓxℓ

)

dx

= −‖k‖2f̂(k).

Definition C.2.8. The Fourier transform or operator transform of an operator A is

Â = FAF−1.

Note this this is equivalent to
ÂF = FA.

That is, this is the frequency-domain operator which takes a k function, back-transforms to an x function,
applies A, and forward-transforms:

Spatial domain Frequency domainA Â

F−1

F
? ?

�

-

Remark C.2.9. As a consequence,

Â = FAF−1

ÂF = FA

ÂFf = (FA)f

F(Af) = Âf̂ .

Remark C.2.10. We just saw in lemma C.2.7, with A = ∇2, that

F(∇2f) = −‖k‖2f̂ .

Therefore we conclude that the Fourier transform of the scaled Laplacian is the multiplication operator

F(c∇2) = −c‖k‖2.
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Proposition C.2.11.

F
(

ec d2/dx2
)

= e−ck2

.

Proof. Moving the transform through the infinite sum without justification, we have

F
(

ec d2f/dx2
)

= F





∞∑

j=0

cj

j!

d2jf

dx2j





=

∞∑

j=0

cj

j!
F

(
d2jf

dx2j

)

=

∞∑

j=0

cj

j!
(−k2j)f̂(k)

=





∞∑

j=0

−(ck2)j

j!



 f̂(k)

= e−ck2

f̂(k).

Proposition C.2.12.

F
(

ec∇2
)

= e−c‖k‖2

.

Proof. TBD. The procedure is similar to C.2.11; there are some combinatorial factors involving mixed partials
which I need to work out on paper.

Proposition C.2.13. The Fourier transform of a convolution is the product of Fourier transforms:

F(f ∗ g) = f̂ ĝ.

Proof. Start with

F (f ∗ g) = F

(∫

Rd

f(y)g(x − y) dy

)

=

∫

Rd

∫

Rd

f(y)g(x − y)e−ik·xdy dx.

Now let z = x − y. Then, using Fubini’s theorem since imaginary exponentials have modulus one and we
assume f, g are L2 so their product is L1 (their inner product exists),

F (f ∗ g) =

∫

Rd

∫

Rd

f(y)g(z)e−ik·(y+z)dy dz

=

∫

Rd

∫

Rd

f(y)e−ik·yg(z)e−ik·z dy dz

=

∫

Rd

[∫

Rd

f(y)e−ik·ydy

]

g(z)e−ik·zdz

= f̂ ĝ.
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Proposition C.2.14. The exponentiated scaled Laplacian may be written as an integral operator:

(

ec∇2

f
)

(x) =

∫

Rd

gc(x − y)f(y) dy.

Proof. Let A = e−c∇2

. Then we need to show

Af = gc ∗ f

F(Af) = F(gc ∗ f)

Âf̂ = ĝcf̂

Â = ĝc.

But this follows from proposition C.2.12.

C.3 Operator trace

As described in section A.8, we will want to compute Tr
(
e−βH

)
. Here is a partial result, assuming that

e−βH can be written as an integral operator. The construction of that integral operator will need to wait
until section E.2.

Proposition C.3.1. If a trace-class operator A on a separable Hilbert space has a G(x,y) such that

Af(x) =

∫

G(x,y)f(y) dy,

then

Tr(A) =

∫

G(x,x) dx.

Proof. As shown in equation A.7.1, with {φj} being a (countable) basis for the (separable) Hilbert space H,

Tr(A) =
∑

j

〈φj | A | φj〉.

Then

Tr(A) =
∑

j

〈φj | A | φj〉

=
∑

j

∫ ∫

φ∗j (x)G(x,y)φj (y) dy dx

=

∫ ∫

G(x,y)




∑

j

φ∗j (x)φj(y)



 dy dx

=

∫ ∫

G(x,y)δ(x − y) dy dx

=

∫

G(x,x) dx.

The appearance of the delta function is due to the following completeness relation.
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Lemma C.3.2. For all x,y,



∑

j

φ∗j (x)φj(y)



 = δ(x − y).

Proof. Let ψ be an arbitrary wave function. Then it is a linear combination of the basis functions: ψ(y) =
∑

j cjφj(y) where cj =
∫
φ∗j (x)ψ(x) dx. Combining these two statements, we have

ψ(y) =
∑

j

(∫

φ∗j (x)ψ(x) dx

)

φj(y)

=

∫



∑

j

φ∗j (x)φj(y)



ψ(x) dx

=

∫

δ(x − y)ψ(x)dx.

Remark C.3.3. Note that G(x,y) only appears in an integral, and thus may be a distribution rather
than a function. This will in fact be the case in section E, where the G(x,y) we construct will contain a
delta-function term.

C.4 Triple product of partial derivatives

This is used for the proof of proposition 6.5.1 in section 6.5.

Proposition C.4.1. Let f : R
3 → R be continuously differentiable. Let (x0, y0, z0) be a point on the surface

f(x, y, z) = 0

where ∂f/∂x, ∂f/∂y, and ∂f/∂z are non-zero. Then there is a neighborhood of (x0, y0, z0) such that

∂x

∂y

∂y

∂z

∂z

∂x
= −1.

Proof. Since ∂f/∂x 6= 0, by the implicit function theorem we can solve for x and write

f(x(y, z), y, z) = 0.

Differentiating with respect to y, we have

∂f

∂x

∂x

∂y
+
∂f

∂y
= 0

∂x

∂y
= −

∂f/∂y

∂f/∂x
.

Likewise,
∂y

∂z
= −

∂f/∂z

∂f/∂y
and

∂z

∂x
= −

∂f/∂x

∂f/∂z
.
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Multiplying the three partials together, we obtain

∂x

∂y

∂y

∂z

∂z

∂x
= −

(
∂f/∂y

∂f/∂x

)(
∂f/∂z

∂f/∂y

)(
∂f/∂x

∂f/∂z

)

= −1.

60



D Brownian motion and Brownian bridges

Here I recall some basic results, all in preparation for discussion of the Feynman-Kac formulas in appendix
E and section 4. The presentation here is almost entirely an elaboration on [Faris]. For full information, see
[GS], [Lawler], or [Øksendal].

D.1 Expectations and covariance

Notation D.1.1. The covariance of R
d-valued random variables

X =






X1

...
Xd




 and Y =






Y1

...
Yd




 ,

having respective means µ and ν, is written

Cov(X,Y) = E[(X − µ)(Y − ν)′] = E[XY′] − µν
′.

We write X′ for the transpose of X from column to row vector. Then XY′ and µν
′ denote the d× d outer

product of X and Y and µ and ν, respectively, and the expectations are taken componentwise:

E[XY′] = E











X1

...
Xd






(

Y1

... Yd

)




 =






E[X1Y1] · · · E[X1Yd]
...

...
E[XdY1] · · · E[XdYd]




 .

In case the covariance matrix has constant c along the diagonal and zeroes elsewhere, we write E[XY] = cI.

Notation D.1.2. For a stochastic process Xt, defined on, say, t ∈ [0,∞) or t ∈ [0, T ] for some positive real
T , and for some Borel set D ⊂ R

d, we write the conditional probabilities

P
a
0(Xt ∈ D) := P(Xt ∈ D | X0 = a)

and
P

a,b
0,T (Xt ∈ D) := P(Xt ∈ D | X0 = a,XT = b).

Likewise, we write the conditional expectations

E
a
0 [F (Xt)] := E[F (Xt) | X0 = a]

and
E

a,b
0,T [F (Xt)] := E[F (Xt) | X0 = a,XT = b].

Similarly, conditional covariances are

Cova
0(Xt,Yt) := E[(Xt − µt)(Yt − νt) | X0 = a,Y0 = a]

and
Cova,b

0,T (Xt,Yt) := E[(Xt − µt)(Yt − νt) | X0 = a,Y0 = a,XT = b,YT = b].

Notation D.1.3. For N stochastic processes X(1), . . . ,X(N), we write the conditional expectations

E
a(1),...,a(N)

0 [F (X
(1)
t , . . . ,X

(N)
t )] := E

[

F (X
(1)
t , . . . ,X(N)) | X

(1)
0 = a(1), . . . ,X

(N)
0 = a(N)

]

and

E
a(1),b(1);...;a(N),b(N)

0,T [F (X
(1)
t , . . . ,X

(N)
t )]

:= E

[

F (X
(1)
t , . . . ,X

(N)
t ) | X

(1)
0 = a(1),X

(1)
T = b(1), . . . ,X

(N)
0 = a(N),X

(N)
T = b(N)

]

.
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D.2 Brownian motion

In this section we review fundamental properties of Brownian motion, highlighting its connections with the
Gaussian function and laying notational groundwork for the Feynman-Kac formulas in sections E and 4.

Brownian motion (see [Øksendal, Lawler, GS] for more careful treatments) is defined for t ∈ [0,∞) 7→ bt ∈
R

d. It has the following properties:

• bt is a stochastic process, or random function of t, which is almost surely continuous (with respect to
the probability measure defined below).

• b0 = 0.

• bt has Gaussian distribution with mean 0 and variance t in each of its d components for all t > 0, and
it has covariance

Cov(bs,bt) = E[bsbt] = (s ∧ t)I

where s ∧ t denotes min{s, t}. Specifically, the probability density function (PDF) of bt at time t is
Gaussian with mean 0 and component variances t. For a box

D = [ℓ(1), u(1)] × · · · × [ℓ(d), u(d)],

we have

P(bt ∈ D) =

∫

D

gt(y) dy. (D.2.1)

where gt is definition C.1.1 for the Gaussian with variance t.

• bt has independent increments : For all s < t < u < v, bt − bs is independent of bv − bu.

It turns out (see also [Faris]) that Brownian motion is uniquely characterized by an extension of equation
D.2.1.

Proposition D.2.2. Brownian motion is uniquely characterized by the following: for all n ≥ 1, all times
0 < t1 < . . . < tn, and all boxes

Dk = [ℓ
(1)
k , u

(1)
k ] × · · · × [ℓ

(d)
k , u

(d)
k ],

P

(
n⋂

k=1

btk
∈ Dk

)

=

∫

D1

∫

D2

· · ·

∫

Dn

gt1(z1)gt2−t1(z1 − z2) · · · gtn−tn−1(zn−1 − zn) dz1 dz2 · · · dzn.

(D.2.3)

Remark D.2.4. That is, we set up some hoops and calculate the probability that a given realization of the
Brownian motion will jump through all of them (figure 7). The only family of functions which jump through
such sets of hoops with these normally distributed rates of success is the family of realizations of Brownian
motion. This defines a probability measure on continuous functions f : [0,+∞) → R

d with f(0) = 0.

Remark. This is equivalent to saying that the joint PDF of the random variables bt1 , . . . ,btn
is

gt1(z1)gt2−t1(z1 − z2) · · · gtn−tn−1(zn−1 − zn).
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Brownian motion

Figure 7: Ten realizations of Brownian motion, moving past three boxes.

Remark D.2.5. Faris points out that one may generalize equation D.2.3. Rephrase it by writing

f(bt1 , . . . ,btn
) = χ∩n

k=1btk
∈Dk

(bt1 , . . . ,btn
).

Then equation D.2.3 becomes

E[f(bt1 , . . . ,btn
)] =

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

gt1(z1)gt2−t1(z1 − z2) · · · gtn−tn−1(zn−1 − zn)

f(z1, . . . , zn) dz1 dz2 · · · dzn.

(D.2.6)

This holds not only for the characteristic function χ which appears in equation D.2.3, but for any Borel-
measurable f .

Definition D.2.7. We extend this to exponentiated integrals by defining

E

[

exp

{
∫ T

0

f(bt) dt

}]

:= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

gT/n(z1)gT/n(z1 − z2) · · · gT/n(zn−1 − zn)

exp







T

n

n∑

j=1

f(zj)






dz1 · · · dzn.

(D.2.8)

Now consider a realization of Brownian motion moving forward in time, having already passed time s with
bs = y (figure 8). We want to find the conditional density of bt.
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Brownian motion, conditioned on b_0.9 = 1

Figure 8: Ten realizations of Brownian motion, conditioned on bs = y.

Lemma D.2.9. The conditional density of bt given bs = y, for t > s, is

gt−s(z − y).

Proof. This is nothing more than fZ|Y(z | y) from elementary probability (see e.g. [GS]), where Z = bt and
Y = bs. From equation D.2.3, with n = 2, the joint density of Y and Z is

gt−s(z − y)gs(y − x).

We compute

fZ|Y(z | y) =
fZ,Y(z,y)

fY(y)
=
gt−s(z − y)gs(y − x)

gs(y − x)
= gt−s(z − y).

D.3 Shifted Brownian motion

Here we generalize Brownian motion (what [Lawler] calls standard Brownian motion) by removing the
requirement that the motion start at 0.

Notation D.3.1. For fixed x, we write
wx

t := x + bt. (D.3.2)
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If x is allowed to vary, we simply write wt. However, this is not well defined as a stochastic process unless
we either set a probability distribution for x, or write wt inside a conditional expectation. We will take the
latter approach in this paper. Also, we take E

x[wt] and E[wx
t ] to be equivalent.

Proposition D.3.3. Shifted Brownian motion has conditional mean and conditional covariance

E
x
0 [wt] = x and Covx

0 [wswt] = (s ∧ t)I.

Proof. These follow immediately from equation D.3.2, along with the mean and covariance for Brownian
motion given in section D.2.

Proposition D.2.2 becomes the following.

Proposition D.3.4. For all n ≥ 1, all times 0 < t1 < . . . < tn, and all boxes

Dk = [ℓ
(1)
k , u

(1)
k ] × · · · × [ℓ

(d)
k , u

(d)
k ],

we have

P
x
0

(
n⋂

k=1

wtk
∈ Dk

)

=

∫

D1

∫

D2

· · ·

∫

Dn

gt1(x − z1)gt2−t1(z1 − z2) · · · gtn−tn−1(zn−1 − zn) dz1 dz2 · · · dzn.

(D.3.5)

Remark D.3.6. This is equivalent to saying that the joint PDF of the random variables wt1 , . . . ,wtn
,

conditioned on w0 = x, is

gt1(z1 − x)gt2−t1(z1 − z2) · · · gtn−tn−1(zn−1 − zn).

Remark D.3.7. Equation D.2.6 becomes

E
x
0 [f(wt1 , . . . ,wtn

)] =

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

gt1(x − z1)gt2−t1)(z1 − z2) · · · gtn−tn−1(zn−1 − zn)

f(z1, . . . , zn) dz1 dz2 · · ·dzn.

(D.3.8)

Definition D.3.9. Definition D.2.7 becomes

E
x
0

[

exp

{
∫ T

0

f(wt) dt

}]

:= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

gT/n(z1 − x)gT/n(z1 − z2) · · · gT/n(zn−1 − zn)

exp







T

n

n∑

j=1

f(zj)






dz1 · · · dzn.

(D.3.10)

D.4 Brownian bridges

[Faris] treats only bridges from x to x; here, we treat the more general case of bridges from x to y. This is
needed for [BU07], [U07], and in particular for section 4 of this paper.
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Definition D.4.1. The Brownian bridge running from x at time 0 to y at time T is

w
x,y
0,t,T = x + bt +

t

T
(y − x − bT ) . (D.4.2)

We may also write this as

w
x,y
0,t,T =

(T − t)x + ty

T
+
Tbt − tbT

T
. (D.4.3)

This looks ungainly, but it has the advantage that the mean is precisely the first term.

Notation D.4.4. As in section D.3, if x and y are allowed to vary, then we again have simply wt. We will
write wt inside a conditional expectation in order to make this notation well defined as a stochastic process.
As well, we take E

x,y
0,T [wt] and E[wx,y

0,t,T ] to be equivalent.

Definition D.4.5. As in definition D.3.9, we extend this to exponentiated integrals by defining

E
x,y
0,T

[

exp

{
∫ T

0

f(wt) dt

}]

:= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

gT/n(x − z1)gT/n(z1 − z2) · · · gT/n(zn−2 − zn−1)gT/n(zn−1 − y)

exp







T

n



f(x) +

n−1∑

j=1

f(zj)










dz1 · · ·dzn−1

:=

∫

exp

{
∫ T

0

f(wt) dt

}

dWx,y
0,T (w).

(D.4.6)

Notation D.4.7. In the last line we have defined the notation for the bridge measure as used in [BU07]
and [U07].

Proposition D.4.8. The bridge process w
x,y
T,t has mean

x +
t

T
(y − x)

and covariance

I

(

s ∧ t−
st

T

)

.

Proof. The mean follows immediately from taking the expectation of equation D.4.2. For the covariance,
we may take advantage of equation D.4.3 where the mean is readily subtractible, and recall notation D.1.1.
Then, since E[bsb

′
t] = (s ∧ t)I, we have

Covx,y
0,T [ws,wt] =

1

T 2
E
[
(Tbs − sbT ) (Tbt − tbT )′

]

=
1

T 2

(
T 2

E[bsb
′
t] − sTE[bTb′

t] − tTE[bsb
′
T ] + stE[bSb′

T ]
)

= I

(

s ∧ t−
st

T

)

.
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Remark D.4.9. If s < t we may write this (perhaps more memorably) as

I
s(T − t)

T
.

Proposition D.4.10. The difference of two Brownian bridges is twice another Brownian bridge.

Proof. Let

x1 + b
(1)
t +

t

T

(

y1 − x1 − b
(1)
T

)

and x2 + b
(2)
t +

t

T

(

y2 − x2 − b
(2)
T

)

be two Brownian bridges, where b(1) and b(2) are independent Brownian motions. The difference of these
bridges is

(x1 − x2) + (b
(1)
t − b

(2)
t ) +

t

T

(

(y1 − y2) − (x1 − x2) − (b
(1)
T − b

(2)
T )
)

.

This is a process running from x1 − x2 to y1 − y2 in time T ; the statistical properties of the difference of
the two Brownian motions remain to be found.

The mean of b
(1)
t − b

(2)
t is zero by linearity of expecation. The covariance is

E[(b(1)
s − b(2)

s )(b
(1)
t − b

(2)
t )] = E[b(1)

s b
(1)
t ] − E[b(1)

s b
(2)
t ] − E[b(2)

s b
(1)
t ] + E[b(2)

s b
(2)
t ]

= (s ∧ t) − 0 − 0 + (s ∧ t) = 2(s ∧ t),

where the cross terms are zero since b(1) and b(2) are independent. Reviewing the properties in section D.2
— independence of increments being trivial — shows that the difference of the Brownian motions is twice a
Brownian motion. Hence, the difference of the Brownian bridges is twice a Brownian bridge.

D.5 Expectations over delta functions

We continue to follow [Faris] by computing expectations over delta functions. This may seem bizarre, but it
is needed in the proof of proposition E.3.1.

Lemma D.5.1. For the shifted Brownian motion starting at x, we have

E
x
0 [δ(wT − y)] = gT (x − y)

where gt is definition C.1.1 for the Gaussian with variance t.

Proof. Using remark D.3.7 for the expectation, we have

E
x
0 [δ(wT − y)] =

∫

Rd

gT (x − z)δ(z − y) dz = gT (x − y).

Lemma D.5.2. The Wiener-measure covariance of the bridge process w
x,y
T,t and the shifted Brownian motion

wT is zero.
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Proof.

Cov
(

w
x,y
T,t ,wT

)

= E

[(

w
x,y
T,t − x

)

w′
T

]

= E

[(
t

T
(y − x) + bt −

t

T
bT

)

b′
T

]

=
t

T
(y − x) E[bT ]′ + E[btb

′
T ] −

t

T
E[bT b′

T ]

=

(

t−
t

T
T

)

= 0.

The following proposition is needed for our treatment of the Feynman-Kac formula in sections E and 4.4.
There, F (w) will be an exponentiated integral in the form of definition D.4.5.

Proposition D.5.3. Expectations over Brownian bridges and expectations over shifted Brownian motion
are related by

E
x,y
0,T [F (w)] =

E
x
0 [F (w)δ(wT − y)]

gT (x − y)
.

Proof. We start with the right-hand side. By construction, at time T the Brownian bridge coincides with
the Brownian motion conditioned on taking value y at time T : wT = y = w

x,y
T . Thus

E
x
0 [F (w)δ(wT − y)]

gT (x − y)
=

E
x
0 [F (wx,y

T )δ(wT − y)]

gT (x − y)
.

By lemma D.5.2, the Wiener-measure covariance of w
x,y
T,t and wT is zero. Therefore the expectation factors

and the right-hand side becomes
E

x
0 [F (wx,y

T,· )] E
x
0 [δ(wT − y)]

gT (x − y)
.

By lemma D.5.1, the denominator is equal to the second term in the numerator. Thus the right-hand side
equals the left-hand side.

D.6 Normalized bridges

We modify definition D.4.5 to obtain a normalized measure: we set a scale factor, then prove that it is chosen
correctly.

Definition D.6.1. Let

dŴx,y
0,T (w) =

1

gT (x − y)
dWx,y

0,T (w). (D.6.2)

Proposition D.6.3. We have ∫

dŴx,y
0,T (w) = 1.
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Proof. Starting with definition D.4.5 for the non-normalized measure, we have

∫

dWx,y
0,T (w) =

∫

exp

{
∫ T

0

0 dt

}

dWx,y
0,T (w)

:= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n−1 times

gT/n(x − z1) · · · gT/n(zn−1 − y) dz1 · · · dzn−1

= gT (x − y)

where the last step follows from proposition C.1.3.
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E Single-particle Feynman-Kac formulas

The material here is familiar from many references. Here I review it for my own understanding, as well as
to fix notation and proof techniques which are used for the derivation of the bosonic Feynman-Kac formula
in section 4.

E.1 e
−βH as expectation

In section C.2, for H0 = −∇2, we saw how to interpret the exponentiated operator

e−βH0 = eβ∇2

as an integral operator with a Gaussian kernel. We now ask, for H = −∇2+U(x) where U is a multiplication
operator corresponding to a potential energy, how to interpret

e−βH = e−β(−∇2+U(x)) = eβ(∇2−U(x)).

Proposition E.1.1. For
H = −∇2 + U(x),

we have

(e−βHf)(x) =
(

eβ(∇2−U(x))f
)

(x) = E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

f(w2β)

]

.

Proof. The Trotter product formula (see [Simon] for a proof) says that for self-adjoint operators A and B,

eβ(A+B) = lim
n→∞

(

eβA/neβB/n
)n

. (E.1.2)

With A = ∇2 and B = −U(x), we have

eβ(∇2−U(x))f(x) = lim
n→∞

(

eβ∇2/ne−βU(x)/n
)n

f(x)

= lim
n→∞

eβ∇2/ne−βU(x)/n
(

eβ∇2/ne−βU(x)/n
)n−1

f(x).

Recall that e−βU(x)/n is simply a scalar. Using the result of section C.2 to write eβ∇2/n as an integral
operator, we have

(e−βHf)(x) = lim
n→∞

∫

Rd

g2β/n(x − z1)e
−βU(z1)/n

(

eβ∇2/ne−βU(z1)/n
)n−1

f(z1) dz1.

Repeating yields

(e−βHf)(x) = lim
n→∞

∫

Rd

∫

Rd

g2β/n(x − z1)g2β/n(z1 − z2)e
−βU(z1)/ne−βU(z2)/n

(

eβ∇2/ne−βU(z2)/n
)n−2

f(z2) dz1 dz2,
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and finally

(e−βHf)(x) = lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

g2β/n(x − z1)g2β/n(z1 − z2) · · · g2β/n(zn−1 − zn)

e−βU(z1)/ne−βU(z2)/n · · · e−βU(zn)/nf(zn) dz1 dz2 . . . dzn

= lim
n→∞

∫

Rd

∫

Rd

· · ·

∫

Rd

︸ ︷︷ ︸

n times

g2β/n(x − z1)g2β/n(z1 − z2) · · · g2β/n(zn−1 − zn)

exp

{

−
β

n

n∑

k=1

U(zk)

}

f(zn) dz1 dz2 . . . dzn.

Now we recognize an integrand in the form of definition D.3.9, and we can write

(e−βHf)(x) = lim
n→∞

E
x
0

[

exp

{

2β

n

(

−
1

2

) n∑

k=1

U(w2kβ/n)

}

f(w2β)

]

.

Interchanging limit and expectation by dominated convergence (since the exponential is bounded above by
1) and recognizing the limit of the sum as a Riemann integral, we obtain the desired result:

(e−βHf)(x) = E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

f(w2β)

]

.

Remark E.1.3. Note that in the U = 0 case, we have

(e−βHf)(x)) = eβ∇2

f(x) = E
x
0 [f(w2β)] .

Yet in section C.2 we also saw that

eβ∇2

f(x) =

∫

Rd

g2β(x − y)f(y) dy.

These two points of view are reconciled by using the Law of the Unconscious Statistician from elementary
probability. Namely, for a measurable function h of a random variable Y ,

E[h(Y)] =

∫

h(y)fY(y) dy

where fY(y) is the PDF for Y. Here, for each fixed β and x, Y is w2β , h(Y) is f(w2β), and the PDF of
w2β is g2β(y − x) as a function of y as noted in remark D.3.6.

E.2 e
−βH as an integral operator

Section C.3 showed how to compute Tr
(
e−βH

)
if e−βH can be represented as an integral operator. Proposi-

tion E.1.1 constructed the operator’s kernel for the U = 0 case. Here we construct the kernel for the general
case, then apply it to find an expression for the trace.
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Proposition E.2.1. If
H = −∇2 + U(x),

then

e−βHf(x) =

∫

G2β,U (x,y)f(y) dy (E.2.2)

where

G2β,U (x,y) = E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

δ(w2β − y)

]

. (E.2.3)

Proof. Inserting equation E.2.3 into the right-hand side of E.2.2 gives

∫

G2β,U (x,y)f(y) dy =

∫

E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

δ(w2β − y)

]

f(y) dy.

Now interchange expectation and integral (by Tonelli’s theorem, since the integrand is non-negative) and
integrate out the delta function:

∫

G2β,U (x,y)f(y) dy = E
x
0

[
∫

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

δ(w2β − y) f(y) dy

]

= E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

f(w2β)

]

= e−βHf(x).

where the last step follows from proposition E.1.1.

E.3 Tr(e−βH) using Brownian bridges

Proposition E.3.1. The trace may be computed using Brownian bridges as follows:

Tr
(
e−βH

)
= g2β(0)

∫

E
x,x
0,2β

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}]

dx.

Proof. Using proposition C.3.1, we have

Tr
(
e−βH

)
=

∫

G2β,U (x,x) dx;

proposition E.2.1 gives us an expression for G(x,y). Setting y = x in equation E.2.3, we have

Tr
(
e−βH

)
=

∫

E
x
0

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

δ(w2β − x)

]

dx.

Using proposition D.5.3, we may convert this expectation over Brownian motion into an expectation over
Brownian bridges:

Tr
(
e−βH

)
= g2β(0)

∫

E
x,x
0,2β

[

exp

{

−
1

2

∫ 2β

0

U(ws) ds

}]

dx.
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Remark E.3.2. Using definition D.4.5, we may match the notation of [BU07] and [U07]:

Tr
(
e−βH

)
=

∫

dx

∫

dW2β
xx(w) exp

{

−
1

2

∫ 2β

0

U(ws) ds

}

.
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