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1. Timeline, professional development, and outreach activities

I am in my final year of a five-year PhD program. The period of support (spring 2010) will complete my
fifth year. The summer and fall of 2009, which have been on VIGRE support, have seen the following:

• I have continued my research. This is discussed in detail below.
• In June, UA’s Bob Sims hosted a workshop on quantum spin systems and applications in quantum

computation. I gave a talk on lattice quadrupling for percolation in quantum networks, as described
in my summer/fall 2009 VIGRE proposal: I am doing follow-on work to [1] for 3D rectangular
lattices. In this talk, I brought my written presentation up to my current level of understanding.
The only remaining obstacle to publication of this percolation work is final write-up along with
finite-size scaling analysis, which is hand-in-hand with FSS as applied to my dissertation research.

• In July, I delivered a contributed talk at the Conference on Stochastic Processes and Their Appli-
cations in Berlin. My aim was to pitch the model to probabilists, downplaying the mathematical-
physics background and emphasizing intuition, known results, conjectures, and experimental meth-
ods. While in Berlin, I made several contacts and had several productive conversations, including a
possible postdoctoral research idea involving minimal-distance matching of Poisson point processes.

• Wednesday through Friday of the week before the Berlin conference, I visited Daniel Ueltschi and his
collaborators Daniel Gandolfo and Jean Ruiz in Marseille. I received valuable feedback on my slides
for my then-upcoming Berlin talk. Gandolfo and I compared several technical details for simulational
methods for the model of random spatial permutations, including size reduction for lookup tables
and the irrelevance of Binder fourth-order cumulants for our model.

• Friday August 7 through Tuesday August 11, I participated in the department’s integration workshop
for incoming graduate students. I wrote a project on the Berlekamp algorithm for factorization of
polynomials over finite fields, an old area of expertise from my master’s-degree days. None of the
eight incoming students chose to work on that project; I assisted Angel Chavez and Kevin Davidsaver
on their group-representation project, focusing in particular on presentation skills.

• I have been working with Tom Kennedy’s bridge group, which consists of three graduate students,
two undergraduates, and himself. I am focusing on mentoring of an undergraduate student (Howard
Cheng) and a junior graduate student (Shane Passon) on software implementation of probabilistic
concepts.

• I presented the progress of my research to the UA mathematical physics seminar in September.
This included most of the content of my 30-minute Berlin talk, as well as recently completed work
on sample variance of exponentially correlated Markov processes. (Precisely, this uses integrated
autocorrelation time to estimate error bars for output of Markov chain Monte Carlo simulation
runs.) I treated this as an early dry run of a job talk; I received several useful feedback points which
will positively impact my on-site job talks this coming spring.

• On October 26, I gave a talk to the UA Math Department’s Software Interest Group on the use of
the Python programming language for numerical methods and presentation graphics. This melded
a talk on the Perl language from three years ago with an explanation of how I use Python’s pylab
module to create the figures in my dissertation and associated writings (including figure 1 of this
proposal).

Date: November 4, 2009.

1



• I am completing my final course — Probability and Random Processes in Engineering, in the Elec-
trical Engineering department — satisfying an out-of-department requirement.

• Since the start of summer 2009, I have completed the following chapters of my dissertation: definitions
and intuition for the probability model, random variables of interest in the model, correctness of the
GKU algorithm, correctness of the worm algorithm and discussion of its remaining stopping-time
problem, ∆H computations, and software design. I also completed an appendix on sample variance
of exponentially correlated Markov processes.

• At Daniel Ueltschi’s request, I am drafting a paper stating my dissertation results. On Tom
Kennedy’s advice, I have structured this so that it will drop neatly into my dissertation. In partic-
ular, it will complete my dissertation chapters on finite-size scaling and quantitative results. I plan
to submit this paper by the end of the year for publication: this will enhance my job-application
materials.

• Since early September I have been actively job-seeking for academic, governmental/laboratory, and
industrial positions. At present (early November), I have been gratified to receive two phone inter-
views and an on-site interview.

The period of support, spring 2010, will include the following:

• Principally, I will complete my doctoral research. This is discussed in detail below.
• Finite-size scaling analysis, in progress now, is not only a key step for the quantitative results in my

dissertation. It is also the missing piece for proper write-up of the percolation results described in
my summer/fall 2009 proposal, which I spoke on in June.

• I will continue to work with Tom Kennedy’s bridge group.
• I will contribute a talk at the AMS/MAA Joint Meetings in San Francisco in January. Of course,

my primary purpose for attending this year’s meetings will be the job search.
• I will also attend the 23rd Annual Workshop on Recent Developments in Computer Simulation

Studies in Condensed Matter Physics at the end of February at the University of Georgia; I am
submitting a request for a contributed talk. There, I hope to make professional contacts; as well,
I hope to obtain on advice on the stopping-time problem of my worm algorithm for the model of
random spatial permutations.

• The results section of my dissertation will be all but complete by the beginning of the spring semester,
thanks to Daniel’s draft-paper request as described above; I will drop in final numbers once the
requisite high-performance-computing runs have completed. I will also tie up all loose ends in my
dissertation.

• Spring job-seeking efforts will include attendance at the Joint Meetings, possible on-site interviews,
and (one fervently hopes) selection from among multiple job offers.

• I plan to defend my dissertation at the end of March. This should leave time for any re-work, in
time for my graduation in May. In particular, Daniel Ueltschi will be on campus at that time.

VIGRE support will be particularly helpful in permitting me to focus on completing a quality dissertation
which will facilitate my success on the job market.

2. Plan of study and research

My research is under Daniel Ueltschi, formerly of the University of Arizona, currently at the University
of Warwick. We are studying the effects of interparticle interactions on the critical temperature of Bose-
Einstein condensation. Ueltschi spent a sabbatical semester at the UA for spring 2009, during which time
we met regularly; at present, I am working largely independently. We will continue to communicate; as well,
I am working with my local advisor, Tom Kennedy, to bring my dissertation to completion. Daniel will visit
the University of Arizona for a few weeks in March; in particular, I will schedule my dissertation defense
around his visit.
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2.1. Background. The model of random spatial permutations arises in the study of the Bose gas, although
it is also of intrinsic probabilistic interest; its history includes Bose-Einstein [2, 3], Feynman[4], Penrose-
Onsager, Sütő [5, 6], and Ueltschi-Betz [7, 8, 9, 10]. Random permutations arise physically when one
symmetrizes the N -boson Hamiltonian with pair interactions, then applies a multi-particle Feynman-Kac
formula and a cluster expansion [9, 10].

The state space is ΩΛ,N = ΛN × SN , where Λ = [0, L]3 with periodic boundary conditions; point positions
are X = (x1, . . . ,xN ) for x1, . . . ,xN ∈ Λ. The Hamiltonian takes one of two forms. In the first, relevant to
the Bose gas, we have

HB(X, π) =
T

4

N∑

i=1

‖xi − xπ(i)‖
2 +

∑

i<j

V (xi,xπ(i),xj ,xπ(j))(1)

where T = 1/β and the V terms are interactions between permutation jumps. (The temperature scale factor
T/4, not β/4, is surprising but correct for the Bose-gas derivation of the Hamiltonian.) In the second form of
the Hamiltonian, considered in this paper, we use interactions which are dependent solely on cycle lengths:

H(X, π) =
T

4

N∑

i=1

‖xi − xπ(i)‖
2 +

N∑

ℓ=1

αℓrℓ(π),(2)

where rℓ(π) is the number of ℓ-cycles in π and the αℓ’s are free parameters, called cycle weights. One
ultimately hopes to choose the αℓ’s appropriately for the Bose gas; even if not, the model is well-defined and
of its own interest.

Different choices of αℓ result in different models: The non-interacting model [11] has αℓ ≡ 0. The two-cycle

model [8, 9], has α2 = α and other cycle weights equal to zero. The general-cycle model has no restrictions
on αℓ. In [10], the small cycle-weight case is considered: the only restriction on αℓ is that αℓ goes to zero in
ℓ faster than 1/ log ℓ. Lastly, the Ewens model, treated in my research (see also [12]) has αℓ ≡ α constant in
ℓ.
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Figure 1. Order parameters fI and fS for finite systems.

One may hold point positions fixed, e.g. on the unit lattice; this approach has been taken for all simula-
tions done up to the present, including specifically the work described in this paper. One obtains a Gibbs
probability distribution on SN :

Y (Λ,X) =
∑

σ∈SN

e−H(X,σ), PΛ,X(π) =
e−H(X,π)

Y (Λ,X)
.(3)

For a random variable S(π), we then have

EΛ,X[S] =
1

Y (Λ,X)

∑

π∈SN

S(π)e−H(X,π), i.e. Eπ[S(π)] =
∑

π∈SN

P (π)S(π).(4)
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An order parameter is the expectation over SN of a random variable, dependent on T and α, which in the
infinite limit is zero to one side of a critical temperature Tc and non-zero on the other side, with analyticity
at all T 6= Tc. See figure 1 for finite-size approximations to two such order parameters, fI and fS: the
former is the fraction of sites in long cycles, whose specific computation is described in [11]. The latter is a
scaled winding number, described in [13]. It quantifies wrapping of long cycles around the 3-torus, which is
the three-dimensional L-box with periodic boundary conditions. Yet another order parameter is E[ℓmax]/N ,
where ℓmax(π) is the number of sites in the longest cycle of π.

Shepp and Lloyd [14] showed in 1966 that, for uniformly weighted non-spatial permutations in SN , E[ℓmax]/N ≈
0.6243; unpublished work of Betz and Ueltschi has found E[ℓmax]/NfI is that same number for the non-
interacting case αℓ ≡ 0. That is, if one adds a spatial structure to the permutations, yet restricts consideration
to the number NfI of points in long cycles, it appears that long cycles are in some sense (as yet to be clearly
defined) uniformly distributed with support on the points which participate in long cycles. This issue was
also given preliminary experimental treatment in [11]. Thus, we define the GRU quotient [11] to be the
quantity E[ℓmax]/NfI and ask whether, for fixed α, it is indeed constant in T . (Note that this quotient is
only defined for T < Tc; for T > Tc, fI is zero.)

A final order parameter is obtained as follows. We define a correlation length ξ to be the expected value
of the spatial length of cycles. The reciprocal correlation length 1/ξ is a right-sided order parameter — a
mirror image of the ones shown in figure 1 — permitting bracketing of the critical temperature from the left
and from the right.

2.2. Current work. Given the ability to correctly determine the finite order parameter SL(T, α), where S
is any of several order parameters, one wishes to take the L → ∞ limit to find S(T, α) and from that find
Tc(α). I am employing a finite-size scaling technique adapted from several PIMC studies [15, 13, 16, 17]; see
also [PV] for a nice survey. Finite-size scaling takes the form of a hypothesis, or rather a set of hypotheses,
which is tested against the data. Namely, define t = (T − Tc)/Tc and examine, say, 0.99 < t < 1.01.

The first hypothesis is that, in the infinite-volume limit, the correlation length ξ(T, α) and the order param-
eter S(T, α) follow power laws

ξ(T, α) ∼ |t|−ν , T → Tc and S(T, α) ∼ tρ, (−t)ρ, or |t|ρ.

One moreover hypothesizes that for T near Tc, SL(T ) and S(T ) are related by a universal function Q which
depends only on the ratio L/ξ:

SL(T, α) = L−ρ/νQ(L1/νt) ∼ L−ρ/νQ((L/ξ)1/ν).

For my dissertation, testing of the finite-size-scaling hypothesis will be done as follows:

• First, collect MCMC experimental data with error bars (found using the method of integrated
autocorrelation time [18]) for a range of L’s, T ’s, and α’s.

• Second, estimate the critical exponents: given an order-parameter plot such as 1, vary the trial
exponent ρ̂. Raise the raw data to the 1/ρ̂ power. Find the ρ̂ with least linear-regression uncertainty.
Do the same for ν̂.

• Third, use the crossing method [PV] to find Tc: once the exponents are known, plot Lρ/νSL(T ) as
a function of T . Since at T = Tc we have t = 0 and

Lρ/νSL(T ) = Q(0),

regardless of L, these curves will cross (approximately, due to sampling variability) at T = Tc. If
they do not, the finite-size-scaling hypothesis is not verified.

• Fourth, having estimated ρ, ν, and Tc, plot Lρ/νSL(T ) as a function of L1/νt. This is a plot of the
scaling function Q. If the hypothesis is correct, the curves for all L should coincide, or collapse, to
within sampling error.
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This determination of critical exponents above will allow me to confirm or refute, on a confidence-interval
basis, the hypothesis that the GRU quotient E[ℓmax]/NfI is constant in T for T < Tc. Namely, if the critical
exponents of E[ℓmax]/N and fI are equal to within sampling error, one may say that their ratio is constant
in T .

My research goals for the spring, in addition to other activities as detailed as the start of this proposal, are
quite precise:

• Complete high-performance computing runs.
• Use these to update, with smaller error bars, experimental determination of critical temperature Tc

as a function of α which will have been crudely computed by the end of the fall semester.
• Use the estimated critical exponents for E[ℓmax]/N and fI to test the hypothesis that the GRU

quotient E[ℓmax]/NfI is constant in T for T < Tc.
• Complete the results section of my dissertation; tie up all loose ends in my dissertation.
• Off-lattice computations, as well as use of non-Ewens cycle weights, are a postdoctoral research topic.
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