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Main questions

What is percolation?

Take a lattice of sites — for today, Z
2. With fixed probablity p, the bond density,

connect nearest-neighbor sites with a bond. The bonds are independent and identically
distributed. Connected nearest-neighbor sites are said to share an open bond. Here,
p = 0.51:

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

.. o - o - o - o - o - o - o o o o - o o o o o o o o o - o - o - o o - o o o o - o o o o ..

.. | | | | | | | | | | | | | | | | | | ..

.. o o - o - o o o - o - o o - o o - o o o - o o - o o o o o - o - o - o o - o o - o o o o ..

.. | | | | | | | | | | | | | | | | | | | | | ..

.. o - o - o o o - o - o - o - o o - o o - o - o - o - o o o - o o o - o o - o o - o o - o - o o - o ..

.. | | | | | | | | | | | | | | | | | ..

.. o o - o o - o o - o o - o - o - o o - o o o - o o o - o - o - o - o o o - o - o - o - o o - o o ..

.. | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o o - o o o o - o o - o - o - o - o - o - o - o o o o o o o - o - o - o o ..

.. | | | | | | | | | | | | | | ..

.. o o - o - o - o - o o - o o - o - o - o o o - o o - o o o o o - o - o - o o - o o o - o o - o ..

.. | | | | | | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o - o - o o o - o - o o - o o o - o - o o o - o o o o o o o - o - o o ..

.. | | | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o - o - o o o - o o o o - o o - o o o - o o - o o - o - o - o - o o o - o ..

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

(This is called bond percolation, where all sites are populated and edges are populated
randomly. The opposite case is called site percolation; I will not discuss it today.)

It is easy to construct a formal probability measure on finite lattices; for Z
2, one uses

cylinder sets to construct a measure. See Grimmett’s Percolation for more information.
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Main questions

Why percolation?

Lattice percolation, along with the Ising model, is to statistical mechanics as the fruit fly
is to biology: easy to produce in large numbers, not too smart or multifaceted, yet with
some properties that (one hopes) shed light on more complex systems.

Percolation may be used to model filtering of fluids through porous materials, current in
complex electric circuits, etc. Mathematicians have, as usual, mathematized percolation
into a pure subject which is interesting in its own right.

One reason I find percolation fascinating is that it has a nice blend of theory and
computation. In fact, many questions in percolation can only (at present) be handled
numerically. Other questions may be reduced theoretically into problems which are
simpler to handle numerically. The main purpose of this talk is to shed some light on
where such numerical results come from.
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Main questions

Questions

Many questions may be asked about percolation. Here are a few (some having arisen in
my recent project with Janek Wehr) which I’ll touch on today:

• Are there infinite clusters, and if so, with what probability? (As it turns out, the
infinite cluster is unique if it exists.)

• What is the probability that a fixed site is in the infinite cluster: θ(p) := P (A ∈ C)?

• What is the probability that one of a pair of adjacent sites is in the infinite cluster:
σ(p) := P (A1 ∈ C ∪ A2 ∈ C)?

• What is the probability that there is a path between two adjacent sites:
τ (p) := P (A1 ◦–◦A2)?

• What is the probability that there is a path between two distant sites:
P (A ◦–◦B) = P (A,B ∈ C)?

• What is the probability that there is at least one path between pairs of distant sites:
P (A1, B1 ∈ C or A1, B2 ∈ C or A2, B1 ∈ C or A2, B2 ∈ C)?

J. Kerl (Arizona) Computational methods in percolation Oct 29, 2008 7 / 36



Main questions

Meaning of A1, A2, B1, B2

Throughout, I take A1, A2 to be on opposite corners of a square, and likewise for B1, B2.
However, I take the A’s to be very far from the B’s. This is the situation that arose, for
reasons outside the scope of this talk, in the project with Wehr. What does “very far”
mean? Far enough that P (A, B ∈ C) ≈ P (A)P (B).

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :

.. o - o - o - o - o - o - o o o o - o o o o o o o o o - o - o - o o - o o o o - o o o o ..

.. | | | | | | | | | | | | | | | | | | ..

.. o o - o - o o o - o - o o - o o - o o o - o o - o o o o o - o - o - o o - o o - o B1 o - o ..

.. | | | | | | | | | | | | | | | | | | | | | ..

.. o - o - o o o - o - o - o - o o - o o - o - o - o - o o o - o o o - o o - o o - o o - o - o B2 o ..

.. | | | | | | | | | | | | | | | | | ..

.. o o - o o - o o - o o - o - o - o o - o o o - o o o - o - o - o - o o o - o - o - o - o o - o o ..

.. | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o o - o o o o - o o - o - o - o - o - o - o - o o o o o o o - o - o - o o ..

.. | | | | | | | | | | | | | | ..

.. o o - o - o - o - o o - o o - o - o - o o o - o o - o o o o o - o - o - o o - o o o - o o - o ..

.. | | | | | | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o - o - o o o - o - o o - o o o - o - o o o - o o o o o o o - o - o o ..

.. | | | | | | | | | | | | | | | | ..

.. o - o - o - o - o o - o - o - o o o - o o o o - o o - o o o - o o - o o - o - o - o - o o o - o ..

.. | | | | | | | | | | | | | ..

.. o o o o o o - o - o - o o - o o o - o - o o - o - o o - o - o o o o o - o o - o o - o o ..

.. | | | | | | | | | | | | | | | | | ..

.. o - A1 o o o - o - o o - o o o - o o o - o o o o o o - o o - o o o o - o - o - o - o o ..

.. | | | | | | | | | | | | | | | ..

.. o - o A2 o - o o o o o o - o - o o - o - o o o o - o o - o o o - o - o o - o - o - o - o o ..

: : : : : : : : : : : : : : : : : : : : : : : : : : : : : : :
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Theoretical reduction

Probability concepts: independence

This talk is light on probability. However, we do need need two key concepts:
independence and the inclusion/exclusion principle.

Definition: Two events X and Y are said to be independent if their probabilities factor,
i.e. P (X ∩ Y ) = P (X)P (Y ).

For intuition, take X and Y to be getting heads from flipping each of two fair coins.

(1) In the usual setup, we have P (X) = 1/2 and P (Y ) = 1/2. Getting two heads
happens happens a quarter of the time, i.e. P (X ∩ Y ) = 1/4 = P (X)P (Y ). The events
X and Y are independent.

(2) Now suppose the coins are welded together side by side. The left coin still comes up
heads half the time, as does the right — so, P (X) = P (Y ) = 1/2. Yet two heads and
two tails each happen half the time, so P (X ∩ Y ) = 1/2 6= P (X)P (Y ). These events X
and Y are not independent.

Note that it’s the intersection, not the union, of independent events which factors. Also
note that we often write P (X ∩ Y ) = P (X,Y ).
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Theoretical reduction

Probability concepts: inclusion/exclusion

Theorem [inclusion/exclusion principle]: The union of n (not necessarily independent)
events A1, . . . , An factors as the alternating sum of intersections, as follows:

P (∪n
i=1Ai) =

n
X

i=1

P (Ai) −
n

X

i,j=1

P (Ai, Aj) +
n

X

i,j,k=1

P (Ai, Aj , Ak)

. . . − (−1)nP (∩n
i=1Ai).

Examples:

P (A ∪ B) = P (A) + P (B) − P (A, B);

P (A ∪ B ∪ C) = P (A) + P (B) + P (C)

− P (A,B) − P (A,C) − P (B,C)

+ P (A,B, C).

There are various ways to prove this in the general case (see any good probability text).
For n = 2, 3, it’s easy to verify this with a Venn diagram, keeping track of the
undercounting and overcounting of each region of the diagram.
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Theoretical reduction

Existence of the infinite cluster

The following may be proved rigorously (see Grimmett, for example):

• There is a critical bond density pc. For the 2D rectangular lattice, this is rigorously
known to be pc = 0.5. For the 3D rectangular lattice, this is experimentally known
to be pc ≈ 0.2488126, to seven decimal places.

• For p < pc, with probability 1 there is no infinite cluster; for pc < p, with probability
1 there is a unique infinite cluster. These facts follow from Kolmogorov’s zero-one
law depending on whether θ(p) = 0 (i.e. p < pc) or θ(p) > 0 (i.e. pc < p).

• For p = pc, it is not clear whether or not θ(pc) = 0. I believe that for d = 2, Kesten
showed that θ(pc) = 0 so there is no infinite cluster at pc, and that the question is
open for d > 2. However, I as of this talk I haven’t been able to find the citation.

See also the figures on the next page.
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Theoretical reduction

Clusters

Here are 200 × 200 lattices with p = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7. Singleton clusters are
marked grey; clusters of size bigger than 1 are marked with randomly selected colors.

Note for later: ξ(p), the correlation length, is the average diameter of non-infinite
clusters. It diverges to infinity as p approaches pc from either side.
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Theoretical reduction

P (A ∈ C)

Recall that θ(p) := P (A ∈ C). This may also be thought of as the fraction of lattice sites
which participate in the infinite cluster. The following is known about θ(p).

• θ(0) = 0 and θ(1) = 1. This is obvious: if p = 0 then no bonds are open; if p = 1
then all bonds are open and C = Z

2.

• For p < pc, θ(p) = 0. There is no infinite cluster, so a fixed site A can’t be in it; for
p > pc, θ(p) is a strictly increasing function of p. (We say that there is a phase

transition at pc.)

• It is conjectured that for p approaching pc from above, θ(p) ∼ (p − pc)
β for some

critical exponent β. This means that, for some 0 < β < ∞, limpցpc

log(θ(p))
log(p−pc)

= β.

• θ(p) looks something like this:

p = 0 p = 1

θ(p) = 0

θ(p) = 1

J. Kerl (Arizona) Computational methods in percolation Oct 29, 2008 14 / 36



Theoretical reduction

P (A1 ◦–◦A2) and P (A1 ∈ C ∪ A2 ∈ C)

Here are two questions which may be handled numerically:

• Probability of the existence of a path between adjacent sites: τ (p) := P (A1 ◦–◦A2).
This is bounded below by p2(2 − p2), since the following two shortest paths (L and
R for left and right, respectively) might exist:

: : : :

.. A1 o .. .. A1- o ..

| |

.. o - A2 .. .. o A2..

: : : :

Note that L and R each occur with probability p2. Then using inclusion/exclusion,
P (L ∪ R) = P (L) + P (R) − P (L, R) = 2p2 − p4 = p2(2 − p2). But there might
also be less direct paths. There are combinatorial difficulties in obtaining a formula
for τ (p) in terms of p.

• σ(p) := P (A1 ∈ C ∪ A2 ∈ C). This shows up in another question to be discussed
below. Note that the proximity of A1 and A2 means the events A1 ∈ C and A2 ∈ C
are not independent.
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Theoretical reduction

P (A,B ∈ C)

If p > pc = 0.5, there exists a unique infinite cluster C with probability 1. Successful
communication from A to B requires A, B ∈ C. These two events are (asymptotically)
independent, so we have

P (A ∈ C) = θ(p), P (B ∈ C) = θ(p), P (A,B ∈ C) = θ2(p).

This question is handled theoretically, modulo our incomplete understanding of θ(p).
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Theoretical reduction

Multiple paths

What is the probability that there is a path from either one of the A’s to either one of
the B’s? Claim:

P (A1, B1 ∈ C or A1, B2 ∈ C or A2, B1 ∈ C or A2, B2 ∈ C) = σ2(p)

where

σ(p) = P (A1 ∈ C or A2 ∈ C).

This can be proved a couple ways: using Boolean logic, and using inclusion/exclusion.

Note that the above expression reduces the question involving global events into one
using local events. Then, experimental methods may be employed to attack those local
questions.

Why bother — why not attack the original question numerically? In a computer, we have
to do finite-size simulations; short-distance events are easier to simulate than
long-distance ones.
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Theoretical reduction

Boolean proof

Start with

P [A1, B1 ∈ C or A1, B2 ∈ C or A2, B1 ∈ C or A2, B2 ∈ C] .

Gather pairs of events:

=P [(A1, B1 ∈ C or A1, B2 ∈ C) or (A2, B1 ∈ C or A2, B2 ∈ C)] .

Boolean distributivity X and (Y or Z) = (X and Y ) or (X and Z):

=P [(A1 and (B1 ∈ C or B2 ∈ C)) or (A2 and (B1 ∈ C or B2 ∈ C))] .

Boolean distributivity X or (Y and Z) = (X or Y ) and (X or Z):

=P [(A1 ∈ C or A2 ∈ C) and (B1 ∈ C or B2 ∈ C)] .

Use asymptotic independence of A events and B events:

=P [A1 ∈ C or A2 ∈ C)] P [B1 ∈ C or B2 ∈ C)] = σ2(p).
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Theoretical reduction

Inclusion/exclusion proof

Start with

P [A1, B1 ∈ C or A1, B2 ∈ C or A2, B1 ∈ C or A2, B2 ∈ C] .

Gather pairs of events and let E be the event (B1 ∈ C or B2 ∈ C):

=P [(A1, B1 ∈ C or A1, B2 ∈ C) or (A2, B1 ∈ C or A2, B2 ∈ C)]

=P [(A1 and (B1 ∈ C or B2 ∈ C)) or (A2 and (B1 ∈ C or B2 ∈ C))]

=P [(A1 and E) or (A2 and E)] .

Apply inclusion/exclusion to the union and use asymptotic independence of A and B
events, then inclusion/exclusion in reverse:

=P [A1 and E] + P [A2 and E] − P [A1 and A2 and E]

=P [A1]P [E] + P [A2]P [E] − P [A1 and A2]P [E]

=(P [A1] + P [A2] − P [A1 and A2]) P [E]

=P [A1 ∈ C or A2 ∈ C] P [B1 ∈ C or B2 ∈ C] = σ2(p).
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Monte Carlo simulations

Monte Carlo simulations
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Monte Carlo simulations

Monte Carlo simulations

Overview:

• For M = 20, 25, 30, 35, 40, 45, . . . as far as patience and CPU time hold out, and for
various values of p above pc, estimate

θM (p) := PM (A ∈ C)

σM (p) := PM (A1 ∈ C ∪ A2 ∈ C)

τM (p) := PM (A1 ◦–◦A2)

for M × M lattices.

• For each fixed p, use finite-size scaling to extrapolate

θ(p) = lim
M→∞

θM (p), σ(p) = lim
M→∞

σM (p), τ (p) = lim
M→∞

τM (p).
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Monte Carlo simulations

Monte Carlo simulations for fixed M and p

The algorithms are simple.

To estimate a single PM value for fixed p and M , do N trials detecting the event in
question. Average these over the N trials to estimate PM of that event. When choosing
N , recall that the sample mean tends centrally toward a normal distribution and that the
normal’s standard deviation goes as 1/

√
N . (I.e. to get another decimal place in the

estimate of PM (E) for some event E, one needs to run 100 times as many experiments.)

For each trial:

• Populate the bonds of the lattice. Each bond is open with probability p.

• When the event is A1 ◦–◦A2 (for τM (p)), do a cluster walk as described below.

• When the event is A ∈ C (for θM (p)) or A1 ∈ C ∪ A2 ∈ C (for σM (p)), mark all
clusters and identify the largest one (as described below). Once the largest cluster is
marked, it is easy to find if the single point A (for θ) or one of A1 and A2 (for σ) is
in that cluster.
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Monte Carlo simulations

Cluster walking

To see if A1 ◦–◦A2, a naive algorithm almost works:

• Start at site A1.

• Make a list of the 0 to 4 nearest-neighbor sites which are connected to A1 by an
open bond.

• If any of those sites is A2, then A1 ◦–◦A2. Stop.

• Otherwise, repeat this process (by recursively calling the subroutine) for each of the
neighbors.

• Once the recursions are complete with no more unmarked neighbors to visit, A1 is
not connected to A2. Stop.

Problem: you can chase around in a circle indefinitely whenever there is a loop in the
bond graph.

Solution: Make a matrix of site marks, all initialized to zero. Mark each site as you visit
it. When recursively calling the subroutine, recurse only into non-visited sites. Infinite
recursion successfully avoided.
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Monte Carlo simulations

Cluster walking

Analogy:

• To see if there’s an acquaintance path between you and Jane Thomas, first ask
yourself if you know Jane personally. If so, then the answer is yes and you’re done.

• If not, ask everyone you know if they have an acquaintance path to Jane. If any of
them have a path to her, then the answer is yes and you’re done.

• Each of the people you ask might also have to ask someone else, and so on.

• Rule: they can’t ask you or anyone else that’s been contacted — else we get in a
silly loop.

• When no one knows Jane personally, and no one has any uncontacted people left to
ask, then the answer is no and you’re done.

• Using this technique, you won’t necessarily have found all acquantaince chains
between yourself and Jane — you’ll have found at most one chain.
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Monte Carlo simulations

Cluster walk with M = 14 and p = 0.51: before and after

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o o o o

o . - . . - . . - . . . . . . . - . . - . o o . - . . - . . - . @ . . . @ . - . @ - @ o

o | | | | | o o | | | | | o

o . - . - . - . - . . . - . - . - . . - . . . - . o o . - . - . - . - . . @ - @ - @ - @ @ - @ . @ - @ o

o | | | | | | | | o o | | | | | | | | o

o . - . . . - . . . . . - . - . . - . - . . o o . - . . . - . . . . @ - @ - @ @ - @ - @ . o

o | | | | | | | | o o | | | | | | | | o

o . - . - . . . - . . - . . - . . . . . - . o o . - . - . . . - . . - . @ - @ @ . . . - . o

o | | | | | | | | o o | | | | | | | | o

o . . . . - . - . . - . . - . - . - . . - . - . o o . . . . - . - . . - . @ - @ - @ - @ . - . - . o

o | | | | | | | | o o | | | | | | | | o

o . - . . - . - . . - . . - . - . - . - . . . - . o o . - . . - . - . . - . @ - @ - @ - @ - @ . . - . o

o | | | | | | | | | o o | | | | | | | | | o

o . - . . . - . - . - . . . . - . - . . - . - . o o . - . . . - . - . - . @ @ @ - @ - @ . - . - . o

o | | | | | | | o o | | | | | | | o

o . . . . . - . - . A1 . - . - . - . . . - . o o . . . . . - . - . A1 @ - @ - @ - @ . . - . o

o | | | | | | | | o o | | | | | | | | o

o . . . . - . - . - . . - A2 . - . . . . - . o o . . . . - . - . - . @ - A2 @ - @ @ @ . - . o

o | | | | | | | | | | o o | | | | | | | | | | o

o . . . . - . . - . - . - . - . . - . - . - . - . o o . . . . - . . - . - @ - @ - @ @ - @ - @ - @ - @ o

o | | | | | | o o | | | | | | o

o . - . - . - . . - . . - . . . . . - . - . . o o . - . - . - . . - . . - @ @ @ . @ - @ - @ . o

o | | | | | | o o | | | | | | o

o . . . - . . - . . . - . . - . . - . - . . o o . . . - . . - . . @ - @ . - . @ - @ - @ . o

o | | | | | | | o o | | | | | | | o

o . . - . . - . - . - . - . . . - . . - . - . - . o o . . - . . - . - . - . - . . . - . @ - @ - @ - @ o

o | | | | o o | | | | o

o . - . . - . . - . - . - . - . - . . - . . - . - . o o . - . . - . . - . - . - . - . - . . - . @ - @ - @ o

o | | | | | | | o o | | | | | | | o

o . - . - . . . . . - . . . . - . . . - . o o . - . - . . . . . - . . . . - . . @ - @ o

o o o o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo
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Monte Carlo simulations

Cluster marking and sizing

Cluster marking for the events A ∈ C and (A1 ∈ C ∪ A2 ∈ C): we need to identify the
largest cluster.

• Again keep a matrix of site marks, now serving as cluster numbers, all initially set to
zero.

• Set cluster number = 1.

• For each site A:

• If A’s cluster number is non-zero (site A has already been visited), continue to the
next site.

• In the site-marks matrix, mark A with the current cluster number.
• For each bonded neighbor of A, recursively call the subroutine.
• After the recursion completes, increment the cluster number by 1.

Cluster sizing:

• Walk through the sites of the lattice, counting the size of each cluster.

• Remember the number of the largest cluster. Call this C.
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Monte Carlo simulations

Lattice before and after cluster numbering: M = 14, p = 0.6

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

o . - . . - . - . - . . - . . - . - . - . . . . o o 1 - 1 2 - 2 - 2 - 2 2 - 2 2 - 2 - 2 - 2 . . 3 o

o | | | | | | | | | o o | | | | | | | | | o

o . . . - . - . . - . - . - . . - . - . - . . . o o 1 2 2 - 2 - 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 4 3 o

o | | | | | | o o | | | | | | o

o . - . - . - . - . . - . - . . - . - . . - . . - . o o 2 - 2 - 2 - 2 - 2 2 - 2 - 2 2 - 2 - 2 2 - 2 4 - 4 o

o | | | | | | | | o o | | | | | | | | o

o . . . - . - . . . - . . - . . . - . . - . o o . 2 2 - 2 - 2 2 2 - 2 2 - 2 5 4 - 4 4 - 4 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . . - . . - . - . - . . . . - . - . - . o o 2 2 - 2 2 - 2 2 - 2 - 2 - 2 2 5 4 - 4 - 4 - 4 o

o | | | | | | | o o | | | | | | | o

o . - . . - . - . - . . - . . . . - . - . . - . o o 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . . - . - . - . . . - . - . - . . - . - . - . - . o o 6 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 2 - 2 - 2 - 2 - 2 o

o | | | | | | | o o | | | | | | | o

o . . - . . . - . . - . - . - . . . - . - . - . o o 6 2 - 2 2 2 - 2 2 - 2 - 2 - 2 2 2 - 2 - 2 - 2 o

o | | | | | | | | | | | | o o | | | | | | | | | | | | o

o . . . . - . - . - . - . . . . - . - . . - . o o . 2 2 2 - 2 - 2 - 2 - 2 2 2 2 - 2 - 2 2 - 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . - . - . - . . . . - . - . - . - . - . . . - . o o 2 - 2 - 2 - 2 7 8 2 - 2 - 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | | o o | | | | | | | | | | | o

o . - . . . - . . . - . . . . - . - . - . . o o 2 - 2 2 7 - 7 8 2 - 2 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | o o | | | | | | | | | o

o . . - . . - . - . - . . - . . . - . - . - . . o o 2 2 - 2 2 - 2 - 2 - 2 2 - 2 2 2 - 2 - 2 - 2 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . - . . . - . - . . . - . - . - . . . - . o o 2 - 2 - 2 2 2 - 2 - 2 2 2 - 2 - 2 - 2 2 2 - 2 o

o | | | | | | | | | | o o | | | | | | | | | | o

o . - . . . - . - . - . - . - . . - . - . . . . o o 2 - 2 2 2 - 2 - 2 - 2 - 2 - 2 2 - 2 - 2 9 2 2 o

o | | | | | | | o o | | | | | | | o

o . . - . - . . . . - . - . - . - . - . . . . o o . 2 - 2 - 2 2 . 2 - 2 - 2 - 2 - 2 - 2 9 . . o

ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo ooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

Here the largest cluster is 2.
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Finite-size scaling
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Finite-size scaling

Finite-size scaling

Finite-size scaling is something I’m still learning about. Thoughts gleaned from Kennedy,
LaPeyre, and Wehr:

• M and ξ (correlation length) are both length scales. (For p < pc, this is the average
cluster diameter. For pc < p, this is the average diameter of finite clusters. It
diverges to infinity as p → pc from either side.) Key point: If M < ξ then the largest
cluster found on the M ×M lattice might not truly be a piece of the infinite cluster.

• For p comfortably above or below pc, M passes ξ quickly and infinite values σ(p)
are obtained quickly.

• For p near pc, one must somehow extrapolate σM (p) to σ(p).

• ξ can also be estimated numerically, if desired.

• Kennedy conjectures σM (p) = σ(p)F (M/ξ), for some F .

• See perhaps Stauffer’s text.

• Wehr: Do the comparison just for one or more p’s off pc. This is more easily
achieved and might be sufficiently newsworthy.

See the next slide for some data, obtained as follows. For a range of p values: for a range
of M values: for three trials: plot θM (p), σM (p), or τM (p).
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Finite-size scaling

Finite-size scaling: σM (p) vs. p (3D case)

These were actually taken from a 3D computation. (Recall pc ≈ 0.2488126 for d = 3.)
It’s clear from this plot that the curve approaches some kind of limiting shape . . . .

0.240 0.245 0.250 0.255 0.260 0.265 0.270 0.275
p

0.0

0.2

0.4

0.6

0.8

1.0

�M(p)
Each series is for one L, from 20 to 75 by 5s
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Finite-size scaling

Finite-size scaling: σM (p) vs. M (3D case)

The figure on the previous slide included the following data, with each column as one
data series:

M = 20 M = 25 M = 30 M = 35 M = 40 M = 45 M = 50 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
p = 0.254 0.0938 0.0865 0.0868 0.0906 0.1047 0.1205 0.1354 . . .
p = 0.254 0.0962 0.0901 0.0867 0.0968 0.1016 0.1221 0.1352 . . .
p = 0.254 0.0982 0.0951 0.0924 0.0982 0.1025 0.1191 0.1412 . . .
p = 0.255 0.1204 0.1269 0.1362 0.1550 0.1778 0.2157 0.2569 . . .
p = 0.255 0.1266 0.1218 0.1389 0.1482 0.1795 0.2163 0.2512 . . .
p = 0.255 0.1269 0.1275 0.1322 0.1546 0.1808 0.2001 0.2524 . . .
p = 0.256 0.1577 0.1690 0.1967 0.2227 0.2682 0.3296 0.3810 . . .
p = 0.256 0.1605 0.1744 0.1895 0.2310 0.2759 0.3140 0.3810 . . .
p = 0.256 0.1632 0.1711 0.1948 0.2269 0.2696 0.3261 0.3810 . . .
p = 0.257 0.1936 0.2227 0.2602 0.3084 0.3725 0.4312 0.5036 . . .
p = 0.257 0.1953 0.2210 0.2612 0.3094 0.3848 0.4465 0.5104 . . .
p = 0.257 0.1973 0.2193 0.2645 0.3148 0.3720 0.4368 0.4981 . . .
p = 0.258 0.2306 0.2893 0.3389 0.4090 0.4782 0.5533 0.6013 . . .
p = 0.258 0.2351 0.2759 0.3321 0.4048 0.4704 0.5491 0.6036 . . .
p = 0.258 0.2432 0.2745 0.3270 0.4057 0.4717 0.5472 0.6056 . . .
p = 0.259 0.2805 0.3422 0.4132 0.4949 0.5629 0.6172 0.6585 . . .
p = 0.259 0.2825 0.3466 0.4103 0.4734 0.5644 0.6313 0.6659 . . .
p = 0.259 0.2862 0.3386 0.4187 0.4868 0.5613 0.6284 0.6629 . . .
. . . . . . . . . . . . . . . . . . . . . . . .

A trick for visualizing the convergence in M is to instead plot each row as a data series.
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Finite-size scaling

Finite-size scaling: σM (p) vs. M (3D case)

We can now clearly see how σM (p) approaches σ(p) as M increases. For p off pc, σ
values have stabilized. For p near pc, they have not.

20 30 40 50 60 70 80
M

0.0

0.2

0.4

0.6

0.8

1.0

�M(p)
Each series is for one p, from 0.241 to 0.279
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Finite-size scaling

Finite-size scaling: θM(p) and σM (p) vs. p

These are data from the 2D case. Recall that for p < 0.5 we already know, for theoretical
reasons, θ(p) = 0. So θM (p) ց 0 as M increases. The fact that θM (p) 6= 0 for specific
M ’s is a finite-size effect.

For σ, we don’t have known theoretical values as we did with θ. To estimate
σ(p) = limM→∞ σM (p) for various p’s, we need to account for finite-size effects. It’s
already clear that σ looks qualitatively similar to θ.

0.44 0.46 0.48 0.50 0.52 0.54 0.56
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0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

�(p)
Each series is for one M, from 20 to 100 by tens
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Finite-size scaling

Finite-size scaling: θM(p) and σM (p) vs. M

As in the 3D case, we can see that for many p’s, the θM (p) and σM (p) curves have
already leveled out by M = 100. I used only a few CPU-hours to gather the data for
these plots, so it would be easy to gather data for larger M ’s, say up to M = 200.

20 30 40 50 60 70 80 90 100
M

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9�M(p)
Each series is for one p, from 0.450 to 0.550 by 0.002
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Each series is for one p, from 0.450 to 0.550 by 0.002
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Finite-size scaling

Finite-size scaling: τM (p) vs. p and M

Remember θ(p) = P (A ∈ C) and σ(p) = P (A1 ∈ C ∪ A2 ∈ C). These are probabilities of
critical events, since the infinite cluster C (whose existence is a global phenomenon) only
appears for p > pc.

On the other hand, τ (p) = P (A1 ◦–◦A2) is a strictly local phenomenon. It is non-critical
and grows smoothly in p, with negligible M dependence.

0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65
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0.2

0.3

0.4
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0.6
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Each series is for one M, from 20 to 100 by tens
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Conclusions

Conclusions

• All finite-lattice questions raised here are easily solved by simulation.

• Finite-size scaling is trivial for τ (p).

• For p far away from pc, it’s easy to extrapolate σ(p) from the graph.

• For p close to pc, one needs to either (1) be content with results for p far from pc;
(2) do simulations for larger M , hoping to surpass the correlation length ξ(p) such
that the curves start to level out; (3) deduce the correct formula for F .

• Thanks for attending!
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