! Do x-coord first -- easier?!? ---------------------------------------------------------------- k Run phase 1 once for each k k Run for n = 50, 60, 70, ... k Get medians from PMFs k Find a's and b's from graphs: - 1st, (relative) a's to level the heights - 2nd, b's to get the origins to zero - use try2.py to get pairs of n's right - then use tryrescale.py to look at all n's k Get shifted PMFs ! Trim down to top 1100 lines or so for reduced du? - Make a script for this. o K-S test to see if shifted plots match one another k Lin fit to get alpha and alpha*ln(k) k From that, get k k Then go back & do plots scaled by 1/(median*k) o K-S test to see if these match the theoretical distribution ... ---------------------------------------------------------------- ... Theoretical distribution: * c? alpha? * google stable subordinator; stephen lalley? ---------------------------------------------------------------- R: * install fBasics package via synaptic * R prompt: library(fBasics) * http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/fBasics/html/StableDistribution.html * x = seq(0, 2, 0.001) * plot(x,dstable(x=x,alpha=.55, beta=0.9999, gamma=.2, delta=0.2)) * http://hosho.ees.hokudai.ac.jp/~kubo/Rdoc/library/fBasics/html/StableDistribution.html * plot(x1, y1, type='p', xlim=range(x1,x2), ylim=range(y1, y2), xlab='x', ylab='y') * points(x2, y2, type='p', col="red", xlab='x', ylab='y') * maybe get a better fit (alpha ~= 0.75?) w/overlay plot & R I/O from rescale data. Find out how to do that. * ac = read.table('all_columns.txt') plot(ac[,1], ac[,2]) points(ac[,31], ac[,32]) !! stableSlider() ---------------------------------------------------------------- R misc: * x=c(1, 2, 3) * names(x) = c('a', 'b', 'c')