
INTRODUCTION TO VIM

John Kerl

University of Arizona

Department of Mathematics

Software Interest Group

September 7, 2005

1



Overview

• Why

• What

• How

2



Why use a power editor such as vim or emacs?

• Notepad, gedit, et al. provide easy point-and-click use,
with very low learning curve. These are great tools, and
they suffice for many people much of the time.

• Much of our time in math, sciences, and engineering (as well
as many other fields!) is spent editing text files: C/C++
source code, Matlab .m files, .tex files (such as this one!),
.html/.css/.php files, etc.

• If you don’t enjoy these tasks, make it efficient so that you
can spend more time doing what you want to do.

• If you do enjoy these tasks, make it efficient so that you
can be more productive.

• A power editor can increase your productivity many times
over. For example, the more comfortable and efficient you
are at creating LATEXfiles, the more likely you will be to
create easy-to-read papers, slides, exams, vita, etc. This
benefits your career.

3



What power editors do

Features:

• Commands can be executed using keystrokes, instead of or

in addition to drop-down menus. Keeps you from moving

your hands back and forth between the mouse and key-

board.

• Customizable key binding, to abbreviate your most-used

commands.

• Syntax highlighting. Not just decoration — helps detect

typos early, keeping you from having to decipher cryptic

error messages from LATEX.

• Macros and scripting to automate repetitive tasks.

• Ability to pipe part or all of a file out to an external program.

4



What power editors do, continued

• Parenthesis matching. Useful for many programming lan-

guages, but especially LISP!

• Tags files for C/C++ programs:

– Run the ctags program.

– Edit your C/C++ source code.

– Push a key (control-] in vim) to move from a function

or variable to its definition.

– Push another key (control-t in vim) to move back.

– These may be nested — there is a “tag stack”.

– This makes code archaeology much easier.

5



vi

• History: vi, short for visual editor, was written by Bill Joy

in 1976. It was one of the first full-screen editors (i.e. not

a line editor).

• It was designed for use over a 300-baud modem, so it min-

imized keystrokes. Slow modems are a thing of the past,

but minimal number of keystrokes is still desirable.

• vi is present on all Unix-like systems.

6



vim

• vim, short for vi improved, was written by Bram Moolenaar

in the early 90s.

• vim does everything vi does, and much more: multiple-

level undo, multiple windows and buffers, macros, block

operators, on-line help, syntax highlighting, mouse and GUI

support, etc.

• Standard component of all major Linux distributions.

7



How to use vim

• Fundamental concept: vim is a modal editor.

• In most editors, including Emacs, the letter keys are always

used for inserting text. This means commands must be

entered using physically awkward combinations of control,

alt (meta), and/or letter keys — or, mouse menus.

• In vim, you are either in command mode or editing mode.

E.g. the letter j is the same as down arrow when you are

in command mode.

• Result: you keep your hands on the keyboard and your eyes

on the screen. You accomplish more, in less time.

8



Getting in and out

• vim (filename) — Start editing (filename) by typing the vim

(or gvim) command at the command prompt.

• :w (new name) — save as.

• :w! (new name) — save as with replace.

• :w — save.

• :q — quit.

• :wq — save and quit.

• :q! — quit, discarding changes.

9



Moving around

• h, l, k, j — left, right, up, down arrow. (You can use the

mouse and/or arrow keys too.)

• control-b, control-f — page up/down. (You can also use

the PageUp and PageDown keys on the keyboard.)

• 0, $ — move to start/end of line.

• b, w — move backward/forward one word.

• {, } — move up/down a paragraph.

• % — Move to matching bracket, if any. Works for (), [],

{}.

• Etc.

10



Getting into and out of editing mode

• i — Insert at the current position.

• I — Insert at the start of the line.

• A — Insert at the end of the line.

• o — Insert below the current line.

• O — Insert above the current line.

• cw — Change current word.

• ESC — Out of editing mode.

11



More commands

• x, X — Delete current/previous character.

• r (key) — Replace current character

• ∼ — invert case of current character.

• u — undo.

• control-r — redo.

• / (pattern)— Forward search.

• ? (pattern)— Reverse search.

• n, N — Next/previous match.

• :%s/old word/new word/g — Global search and replace.

12



Copying and pasting

• yy — Copy (yank) current line.

• 3yy — Copy current line and the next two.

• 3y} — Copy the next three paragraphs.

• dd — Cut (delete) current line.

• 3dd — Cut current line and the next two.

• 3d} — Cut the next three paragraphs.

• yw — Copy current word.

• dw — Cut current word.

• In general, y or d followed by any cursor-motion command.

For example, d$.

• p — Paste after.

• P — Paste before.

13



Learning curve

I was once a die-hard Emacs user, but found myself at a com-
pany where vi was on all workstations, but Emacs was not.

Learning vi, I found that I did not try to memorize all possible
commands. Rather, I learned the most useful ones. Later, after
I became accustomed to them, I learned some more commands
as a way of saving keystrokes.

Different people have different crossover points for productivity
vs. amount of things to memorize. If you are learning vi or
Emacs, I would suggest the approach I used: memorize what
you need. Memorize more when you need it. Like playing
the piano or learning to type by touch, your fingers will learn
what they use.

Also, gvim has a nice GUI. If you wish, you can use familiar
point-and-click commands, gradually replacing them with more
efficient keystrokes as meets your needs.

14



.vimrc file

The ∼/.vimrc file contains any particular settings you prefer.

Some of these look messy, but you only type them in once and

forget about the details. Example lines:

• set vb t vb= — turn beep off.

• set ts=4 — set tabstop to 4.

• syntax on — enable syntax highlighting.

• map ; : — Do :wq, etc. without needing to hold down the

shift key.

• map - :.=ˆM — Show current line number. (Note: To

enter the last character into your .vimrc file, type control-v

followed by control-m.)

15



.vimrc file, continued

• map \t O%% control-v ESC64A-control-v ESC — In-

sert a commented out line of dashes such as the following:

%% ———————————————

Helps make your .tex files easier to navigate through.

• map \w :wˆM:!latex %ˆM — Save current file and run

it through latex, using just two keystrokes.

Tip: Leave “xdvi filename.dvi &” running, then alt-tab to

bring xdvi forward and back. The xdvi program automat-

ically reloads the .dvi every time it is foregrounded. This

enables rapid, iterative development of .tex files. Then,

pdflatex when you are ready to print.

16



Resources

• Type vimtutor at the command prompt. The tutorial takes

about half an hour.

• The file you are reading is at

http://math.arizona.edu/∼kerl/doc/vimswig/vimswig.pdf

It was written in LATEXusing vim:

http://math.arizona.edu/∼kerl/doc/vimswig/vimswig.tex

It was typset using the command “pdflatex vimswig.tex”.

• http://math.arizona.edu/∼swig

• http://www.vim.org for on-line documentation and FAQ.

• Fly like the wind!

17


