
Notes for representation theory

John Kerl

February 3, 2008

Abstract

This is a crib sheet for representation theory. It is under construction.
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1 Basic formulas and orthogonality relations

χ(g) = Tr(U(g))

〈χi, χj〉 =
1

o(G)

∑
g∈G

χi(g)χj(g) = δij

=
1

o(G)

∑
Ck

#(Ck)χi(Ck)χj(Ck) = δij

1
o(G)

∑
g∈G

D
(α)
ij (g)D(β)

k` (g) =
1
dα

δαβδikδj`

{
√

dαD
(α)
ij (g)}

is an o.n. basis for CG, with inner product

〈f, g〉 =
1

o(G)

∑
x∈G

f(x)g(x).

dim(CG) = o(G)

#((̂G)) = number of cjg classses of G.

{χ(α)} form an o.n. basis for Z(CG).

characters are class functions

Inner product on characters:

〈χi, χj〉 =
1

o(G)

∑
g∈G

χi(g)χj(g) = δij .

Orthogonality:

∑
χ

χ(Ci)χ(Cj) =
δijo(G)
#Cj

;

∑
C

χ(α)(C)χ(β)(C)
#C

o(G)
= δαβ .
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2 Character table for S3
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3 Induced representations

To write or not to write?
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4 Induced characters

Type up the nice homework here.

Frobenius character formula . . . .
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5 The little-group method

Following the method of section V.1 of [Simon], we compute the character table for V4 o S3.

In general, the method of the constructive proof of Simon’s proposition V.1.1. applies to G = N oα H where
N C G, N is abelian, and H → Aut(N). Here we have N = V4 = {e, a, b, c}, and α has H = S3 permuting
{a, b, c}.

Recall that the dual of V4, i.e. V̂4, is
e a b c

χ0 1 1 1 1
χ1 1 1 -1 -1
χ2 1 -1 1 -1
χ3 1 -1 -1 1

Then we form β : H → Aut(N̂) by
(βhχ)(n) = χ(α−1

h n).

Here, we have

e a b c

β1χ0 1 1 1 1
β1χ1 1 1 -1 -1
β1χ2 1 -1 1 -1
β1χ3 1 -1 -1 1

e a b c

β(12)χ0 1 1 1 1
β(12)χ1 1 -1 1 -1
β(12)χ2 1 1 -1 -1
β(12)χ3 1 -1 -1 1

e a b c

β(123)χ0 1 1 1 1
β(123)χ1 1 -1 1 -1
β(123)χ2 1 -1 -1 1
β(123)χ3 1 1 -1 -1

and likewise for the remaining three elements of S3, namely, βh acts by permuting the second through fourth
columns of the character table. Thus we read off the action of β on V̂4:

χ0 χ1 χ2 χ3

β1 χ0 χ1 χ2 χ3

β(12) χ0 χ2 χ1 χ3

β(13) χ0 χ3 χ2 χ1

β(23) χ0 χ1 χ3 χ2

β(123) χ0 χ2 χ3 χ1

β(132) χ0 χ3 χ1 χ2

Thus the orbits of V̂4 under β are

O0 = {χ0}, O1 = {χ1, χ2, χ3}.

For these two orbits I choose representatives χ0 and χ1, respectively.

Next we compute the isotropy subgroups Hi for χi. From the table above, we see that all elements of S3 fix
the trivial character of V4; only the identity permutation and (23) fix χ1. That is,

H0 = S3, H1 = 〈(23)〉.

The construction of irreducible representations U for N oH requires knowledge of irreducible representations
L for Hi. However, we wish only to compute irreducible characters χU for N o H and it happens that we
only need irreducible characters χL for Hi. Thus we skip most of step 1 of Simon’s proof, which involves
the construction of U ’s.
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Recall the character tables for H0 = S3 and H1 = 〈(23)〉 ∼= Z2:

1 (12) (123)
χLS3,1 1 1 1
χLS3,2 1 −1 1
χLS3,3 2 0 −1

1 (23)
χL〈(23)〉,1 1 1
χL〈(23)〉,2 1 −1

Following Simon’s notation, we compute cosets x of H/Hi:

H0 : x = S3;
H1 : x = {1, (23)}, {(12), (123)}, {(13), (132)}.

I select the following coset representatives:

H0 : hx = S3;
H1 : hx = (23), (12), (13).

We should have χx = (βhx)χi ∈ Oi being distinct and exhausting all of Oi. In fact, we compute

H0 : χx = χ0;
H1 : χx = χ1, χ2, χ3

which furnishes a sanity check.

For each choice of Oi and χL we will have an irreducible character χU of V4 o S3. For O0 there are three
χL’s; for O1 there are two χL’s. The dimensions should turn out to be dim(L) ·#(H/Hi). These dimensions
are then 1 · 1 = 1, 1 · 1 = 1, and 2 · 1 = 2 for O0, and 1 · 3 = 3 and 1 · 3 = 3 for O1. This will furnish another
sanity check below.

Next we compute Hx = hxHih
−1
x . Recalling the values of hx above, we have

H0 : 1S31 = S3,

H1 : (23)〈(23)〉(23) = 〈(23)〉,
H1 : (12)〈(23)〉(12) = 〈(13)〉,
H1 : (13)〈(23)〉(13) = 〈(12)〉.

Simon’s formula for χU requires the indicator function Chx : S3 → {0, 1}:

Chx(h) =

{
1, h ∈ Hx;
0, h 6∈ Hx.

Here, we have
1 (12) (13) (23) (123) (132)

H1 1 1 1 1 1 1
H(23) 1 0 0 1 0 0
H(12) 1 0 1 0 0 0
H(13) 1 1 0 0 0 0

Having tabulated these data, we are almost ready to apply Simon’s formula V.1.7 for χU ’s:

χU (n, h) =
∑

x∈Oi

χx(n) Chx(h) χL(h−1
x hhx).
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Since characters are class functions, we do not need to compute these sums for all 24 elements of V4 o S3

(i.e. 4 values of n and 6 values of h). Recall from appendix B that we have the following conjugacy classes
for V4 o S3:

C1 = {e1},
C2 = {a1, b1, c1},
C3 = {e12, e13, e23, a23, b13, c12},
C4 = {a12, b12, a13, c13, b23, c23},
C5 = {e123, a123, b123, c123, e132, a132, b132, c132}.

I select the first element of each conjugacy class as representatives. Now we may apply the formula. Having
already carefully tabulated the needed data, we may simply (and with low risk of computational error) read
off the desired values.

(1) χU1 comes from O0 and L the trivial representation on S3; hx = 1.

n h χx(n) Chx(h) χL(h−1
x hhx)

χU1(e, 1) = χ0(e) · 1 · 1 = 1
χU1(a, 1) = χ0(a) · 1 · 1 = 1
χU1(e, 12) = χ0(e) · 1 · 1 = 1
χU1(a, 12) = χ0(a) · 1 · 1 = 1
χU1(e, 123) = χ0(e) · 1 · 1 = 1

(2) χU2 comes from O0 and L the parity representation on S3; hx = 1.

n h χx(n) Chx(h) χL(h−1
x hhx)

χU2(e, 1) = χ0(e) · 1 · 1 = 1
χU2(a, 1) = χ0(a) · 1 · 1 = 1
χU2(e, 12) = χ0(e) · 1 · -1 = −1
χU2(a, 12) = χ0(a) · 1 · -1 = −1
χU2(e, 123) = χ0(e) · 1 · 1 = 1

(3) χU3 comes from O0 and L the two-dimensional representation on S3; hx = 1.

n h χx(n) Chx(h) χL(h−1
x hhx)

χU3(e, 1) = χ0(e) · 1 · 2 = 2
χU3(a, 1) = χ0(a) · 1 · 2 = 2
χU3(e, 12) = χ0(e) · 1 · 0 = 0
χU3(a, 12) = χ0(a) · 1 · 0 = 0
χU3(e, 123) = χ0(e) · 1 · 1 = −1
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(4) χU4 comes from O1 and L the trivial representation on 〈(23)〉; hx = (23), (12), (13).

n h χx(n) Chx(h) χL(h−1
x hhx)

χU4(e, 1) = χ1(e) · 1 · 1
+ χ2(e) · 1 · 1
+ χ3(e) · 1 · 1 = 1 + 1 + 1 = 3

χU4(a, 1) = χ1(a) · 1 · 1
+ χ2(a) · 1 · 1
+ χ3(a) · 1 · 1 = 1− 1− 1 = −1

χU4(e, 12) = χ1(e) · 0
+ χ2(e) · 0
+ χ3(e) · 1 · χL((13)(12)(13) = χL(23) = 1

χU4(a, 12) = χ1(a) · 0
+ χ2(a) · 0
+ χ3(a) · 1 · χL((13)(12)(13) = −χL(23) = −1

χU4(e, 123) = χ1(e) · 0
+ χ2(e) · 0
+ χ3(e) · 0 = 0

(5) χU5 comes from O1 and L the parity representation on 〈(23)〉; hx = (23), (12), (13).

n h χx(n) Chx(h) χL(h−1
x hhx)

χU5(e, 1) = χ1(e) · 1 · 1
+ χ2(e) · 1 · 1
+ χ3(e) · 1 · 1 = 1 + 1 + 1 = 3

χU5(a, 1) = χ1(a) · 1 · 1
+ χ2(a) · 1 · 1
+ χ3(a) · 1 · 1 = 1− 1− 1 = −1

χU5(e, 12) = χ1(e) · 0
+ χ2(e) · 0
+ χ3(e) · 1 · χL((13)(12)(13) = χL(23) = −1

χU5(a, 12) = χ1(a) · 0
+ χ2(a) · 0
+ χ3(a) · 1 · χL((13)(12)(13) = −χL(23) = 1

χU5(e, 123) = χ1(e) · 0
+ χ2(e) · 0
+ χ3(e) · 0 = 0
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Collecting these results, we have the character table for V4 o S3:

e1 a1 e12 a12 e123
χU1 1 1 1 1 1
χU2 1 1 -1 -1 1
χU3 2 2 0 0 -1
χU4 3 -1 1 -1 0
χU5 3 -1 -1 1 0
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A Semidirect products

(This section is merely review material from abstract algebra.)

Definition A.1. Let G be a group with N C G and K ⊆ G. Furthermore suppose that G = NK and
N ∩K = {1}. If K acts on N (formally, if there is a homomorphism K → Aut(N)), we write

N o K

and call this the semidirect product of N and K. We sometimes write the action of k ∈ K on n ∈ N as
nk. Since G = NK, any g ∈ G may be written in the form (n, k). Multiplication in G is

(n1, k1)(n2, k2) = (n1n2
k1 , k1k2).

Remark A.2. How does inversion work? Given (n, k) we need to find (m, j) such that (n, k)(m, j) = (1, 1).
This gives

(1, 1) = (n, k)(m, j) = (nmk, kj)

which forces j = k−1. Then, in the first slot, nmk = 1 forces

mk = n−1

m = (n−1)k−1
.

Thus,
(n, k)−1 = ((n−1)k−1

, k−1).

Example A.3. B Dihedral groups may be written as

Dn = Cn o C2 = 〈ρ〉o 〈φ〉

where ρ is the rotation of order n and φ is the flip. The flip acts on the rotations by inverting them:

ρiφjρkφ` =

{
ρi+kφj+`, j even
ρi−kφj+`, j odd

which is to say (since there are only two distinct powers of φ)

ρiρkφ` = ρi+kφ`

ρiφρkφ` = ρi−kφ1+`.

This is the familiar transposition rule
φρk = ρ−kφ.

C

Example A.4. B The T group (the other non-abelian group of order 12, besides A4 and D6) is

T = Z3 o Z4

where Z4 acts on Z3 by inversion. That is, 1 and 3 in Z4 negate elements of Z3; 0 and 2 in Z4 leave elements
of Z3 alone. C
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B Arithmetic in V4 o S3

Some of the examples in this note make use of V4 o S3. Here I work out arithmetic for this group.

Let
V4 = {e, a, b, c}

be the Klein-four group as usual. Recall that symmetric group S3 is

S3 = {1, (12), (13), (23), (123), (132)}.

Let S3 act on V4 by permuting the symbols a, b, and c. For example, a(123) = b. Then we can write the
semidirect product

V4 o S3.

It can be shown (I won’t here) that this is isomorphic to S4.

Let u, v ∈ V4 and σ, τ ∈ S3. Using definition A.1, we can write the product

(u, σ)(v, τ) = (uvσ, στ).

For example,

(a, (123))(b, (12)) = (ab123), (123)(12))
= (ac, (13))
= (b, 13).

In particular, we have a square formula

(u, σ)2 = (uuσ, σ2)

and a cube formula

(u, σ)3 = (uuσ, σ2)(u, σ)

= (uuσuσ2
, σ3).

Also from remark A.2, and recalling that all elements of V4 are their own inverses, we have an inverse
formula

(u, σ)−1 = (uσ−1
, σ−1).

From this we obtain a conjugation formula

(v, τ)−1(u, σ)(v, τ) = (vτ−1
, τ−1)(uvσ, στ)

= (vτ−1
(uvσ)τ−1

, τ−1στ).

xxx conjugacy classes: first compute element orders . . . .
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