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Abstract

These are some random jottings on Riemannian geometry. Complete information may be found in
Lee’s Riemannian Manifolds: An Introduction to Curvature.
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1 Overview

Here I want to spell out in a little more detail than [Lee3| what sharps, flats, contraction, and tensor inner
products look like in coordinates. In particular, I want to show how things look in terms of row vectors,
column vectors, and matrices whenever possible. I could work this out on scratch paper (and I have done
so0), but (as is my wont) it seems a shame not to typeset these useful things for legible future reference.



2 Notation

In this section I spell out some details of the Einstein summation convention. Let (M, g) be a Riemannian
m-manifold. We are working in the category of smooth manifolds, so when I say map or section, I mean
smooth map and smooth section.

Vector fields: Let X,Y be vector fields on M. These are sections of the tangent bundle T'M. A collection
of several vectors will be indexed by subscripts. In particular, in coordinates defined on an open subset of

M, TM is spanned by
0 0

8,7;17.“78.137“.

Those look like superscripts but they’re in the denominator so we think of them as subscripts.

The components of a single vector will be indexed by superscripts. In particular, the m coordinates for a
point q of M, in a given coordinate chart, will be written

Likewise, since the 9/0x7’s span T'M, each X is a linear combination thereof with coefficients X7:
m
.0
X - )(‘7 - .
j; oxJ

The Einstein summation convention is used: If the same index appears repeated in an expression, once
in a subscript and once in a superscript, then the summation is implicit. We write

-0
= J
X Xamj.

Covector fields: Let A, u be covector fields (1-forms) on M. These are sections of the tangent bundle T'M.
A collection of several covectors will be indexed by subscripts. In particular, in coordinates defined on an
open subset of M, T*M is spanned by

dat,. .. dz™.

The components of a single covector will be indexed by subscripts. Since the dx'’s span T*M, each ) is a
linear combination thereof with coefficients X*:

A= Em: Nidz®.
i=1

Again, using Einstein summation, this is

A= \dz'.

Tensor fields: A tensor of type (lz) has k covariant components and ¢ contravariant components. A covector
field has type ((1)) and is covariant:
A e T (M)

a vector field has type ((1)) and is contravariant:
X eTh(M);

The above index convention applies: the covariant components of a tensor are superscripts (or denominator
subscripts), and the contravariant components of a tensor are subscript (or denominator superscripts).



Metric tensor fields: We usually call these simply metric tensors. The metric 2-tensor on the Riemannian
manifold (M, g) is g. It is a symmetric positive-definite doubly covariant 2-tensor; it is a bilinear map from
TM x TM to R. We write

9(X,Y).

Since g is covariant, the components of g are g;; for 1 < i, j < m. Since the components of X and Y are X*
and Y*, respectively, and using linearity, we have

L0 0
= 4 ]
g(X,Y) g<X oY 333j>

o o 0
= vy _—
Xyg(axi’am)

N
9id =9I\ 9zi* 9ui )

and call these the components of g. Then we have simply

We write

g(X,Y) = g;; XYY,



3 DMatrix view of vectors, covectors, linear transformations, and
metrics

Remark 3.1. Recall that A(X) is, in coordinates,

MX) = X5
Since covectors are row vectors and vectors are column vectors, we have
Xl
AX) =( M )|
Xm

Remark 3.2. Let A be a linear transformation on TM. Recall that A(X) is, in coordinates,

A(X) = A X7.
From the matrix point of view, we have
AL AL X,
AX) = : :
AT AT X

That is, a matrix times a column vector is another column vector.

Remark 3.3. Likewise, if A is a row vector, then AA is another row vector: In coordinates,

AA = NAL
From the matrix point of view, we have
AL AL
)\A:()\l )\m) : :
Ao AR

Remark 3.4. We can think of a linear transformation as a mixed tensor of type 1-1. This means it must
consume a covector and a vector, as follows:

AN, X) = AKX,

Note that the expression on the right is well-defined without parentheses due to the commutativity of matrix
multiplication. In coordinates,

MX = NALXY.
From the matrix point of view, we have
AL AL X
/\AX:(/\l )\m) : : :
AP L0 AR Xm
Remark 3.5. This is superficially similar to computing g(X,Y):
9(X,Y) = gi; XY,

Now, g does not change coordinates in the same way as a matrix A; g is of type ((2)) and A is of type (})
Nonetheless, for fixed coordinates, if we think of the two-dimensional array g;; as a matrix G, then we can
think of g(X,Y) as

g(X,Y) = X'GY.



4 Contraction, flats, and sharps

Definition 4.1. The flat operator or index-lowering operator takes vectors to covectors:
X X

such that for all Y,
X'(Y)=g(X,Y).

Remark 4.2. In coordinates, the right-hand side is
9(X,Y) = g;; X'Y7
and the left-hand side is (since X" is a covector)
X (V)= X7,

Setting these two equal means that

According to [Leed|, it is standard practice to write

X" = X;da?,
so we have simply '
As matrices, we have

X’ =Xx'a.

Definition 4.3. The sharp operator or index-raising operator takes covectors to vectors:
A N
such that for all Y,
AY) =g\, Y).

This is constructed to be the inverse of the flat operator.

Remark 4.4. In coordinates, the left-hand side is
AY) = \Y7
and the right-hand side is (since A* is a vector)
gAY = g5 (A7,

Setting these two equal means that _
N = g (W)

Apparently, it is also standard practice to write

Then we write simply



As matrices, we have

A= ()G,
Now, since G is invertible, this is the same as
AGTH = (A
which as a sum is N _
Nighl = N

as long as we define g;; to be the components of G' and g% to be the components of G~!. Note: This doesn’t
match Lee, but I can’t find my mistake (or his).

Definition 4.5. trace or contraction ....



5 Formulas

These are formulas involving metrics, covariant derivatives, Christoffel symbols, and various types of curva-
ture.

5.1 Notation

Throughout let
{Ei},

be a local frame on an n-dimensional Riemannian manifold (M, g). In particular,

a n
Oz J iy

is a local frame with respect to a coordinate x. For brevity, I will write this as

{81'}?:1 :

Note that the denominator superscript i has become a subscript i outside of a fraction, in keeping with the
Einstein convention.

The Lie bracket of two vector fields X and Y is
[X,Y]=XY -YX. (5.1)

The product rule gives

X(fY) = X(f)Y + fXY. (5.2)

Tensors are listed as type (lz) where the upper valence is covariant and the lower valence is contravariant.
In particular, a k-form is a tensor of type (]S), a vector field is of type (?), and the Riemannian metric is of

type ((2))

5.2 Riemannian metric

The Riemannian metric:
9ij = 9(Ei, Ej). (5.3)

Recall that g;; is symmetric in ¢ and j. This is an n x n array. Treated as a matrix, it has an inverse (since
it is positive definite). This is written

g (5.4)
5.3 Christoffel symbols, connections, and covariant derivatives

Christoffel symbols in terms of the metric:

1
Fi'cj = §9km (0igjm + 0jGim — OmGij) - (5.5)



Recall that I'}; is symmetric in i and j.
A connection V xY satisifies:

VixY = fVxY and additivity in X
Vx(fY)=X(f)Y + fVxY and additivity in Y

This defines a connection V:
Vg, Ej =T} E)
with extension by linearity. xxx fill in the steps:

VxY = (XY* + X'YIT))Ey,.

Compability of covariant derivative V and metric g:

akg (aiaaj) =g (Vakaivaj) +g9 (817 vﬁkaj) :
Torsion (?)—tensor:
T(X,Y)=VxY -VyX — [X|Y].

xxx cmt on torsion-freeness of the Levi-Civita connection:

VxY - VyX = [X,Y].

5.4 Section title TBD

Shape operator:
10-09 notes: II stuff . ...

XXX
II(X,Y) = g(X,Y)n

with (M, §) and (M, g) setup.

5.5 Section title TBD

Riemann measure:

’\/det(g) dz' Ao Ada™].

Riemann volume:

Vdet(g) dzt A - Ada™.

10

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)

(5.16)



5.6 Curvatures

XXX

R(X,Y)Z =VxVyZ —VyVxZ —Vxy]Z.

xxx (or Rm?):
R(X,Y,Z,W) = g(R(X,Y)Z,W)
= R XY ZFW*

Dimension 2: There is only one sectional curvature Rig91.

Ric(X,Y) = Kg(X,Y); S = 2K.

10-11 notes: principal, mean, sectional curvatures
10-11 notes: Gauss equation
10-16 notes: Ric and R on a frame.

Bianchi identities: Define
Ve(X,Y,Z, W, V)=VyR(X,Y,Z,W).

Then
RX,Y,Z W)+ R(Y,Z,X,W)+ R(Z,X,Y,W)=0

VR(X,KZ,V,W)‘FVR(K‘/,Z,WX) +VR(V7X7Z7WY) =0.

xxx 3 symmetries of R:
R(X,Y,Z,W)=—-R(X,Y,W,Z)
R(X,Y,Z,W)=4+RW,Z,X,Y).

Sectional curvature:

K(X.Y) = R(X,Y,Y,X) .
9(X, X)+9(YY) —g(X,Y)?

XXX
R’ = 0,1, — 0,1, + TRT% , — TS .

XXX

R=VxVy —VyVx — V[X,Y]~
Scalar curvature S or R:
S = g Ri; = g* " Riije.

Ricci flow:
0
agu = _2Rij-

11

(5.23)
(5.24)
(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

(5.30)



5.7 To be filed

xxx comment on (with ¢ a 1-form):

dp(X,Y) = Xo(Y) = Y$(X) — ¢([X, Y]). (5.31)

xxx 17

9(VxY,Z) = % (Xg(Y,Z)+...(look up in Lee)). (5.32)

12
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