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Abstract

The following are notes to help me prepare for the University of Arizona math department’s Real
Analysis qualifier in August 2006. Disclaimer: Nothing in this paper is claimed to be true. Rather, what
is written here reflects my current understanding, however erroneous that may be. This paper is under
construction.
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1 Principles

Royden ([Roy], section 3.6) attributes to Littlewood the following three principles of analysis:

(i) Every measurable set is nearly a finite union of intervals;

(ii) every measurable function is nearly continuous;

(iii) every convergent sequence of measurable functions is nearly uniformly convergent.

The point here is that when we don’t know what to do, we can approximate.

Here are some themes I see in the qual packets and qual review sessions:

• Know the main theorems with precise statements of their hypotheses and conclusions. On the
qual we will not only need to state the name of the theorem we’re using (e.g. when interchanging
the order of iterated integrals) but also we will need to write little lemmas to prove that the theorem
applies.

• Name-dropping: If I’ve written up a response which does not make use of a theorem named after
someone, I’ve probably missed something: either I’ve done something incorrect, or I’ve done a step
without sufficient justification.

• Work avoidance: Before performing a computation, see if it’s necessary. For example (this is a
geometry example), don’t compute the projection of a vector onto a plane if a quick dot-product
computation reveals that the vector is already parallel or perpendicular to the plane. Don’t worry
about computing finite change-of-variable scale factors in an integral if all you need to show is that
the integral is infinite. This save valuable time, and will also demonstrate competence.

• Memorization: Know some standard integrals, power-series expansions, etc. so that they may be
recognized on sight. [xxx insert xrefs].

• Association: A lower-level exam might tell you the name of a theorem, merely asking you to state it.
A qual requires you to free-associate among many possibilities. Furthermore, some experimentation is
often required in a qual response. Throughout my qual-prep notes I look for opportunites to populate
my free-association list. For example, whenever I see a double integral, I should think Tonelli and Fubini
(theorems 7.11 and 7.12); whenever I see an integral inequality I should think of Hölder (proposition
9.9); etc.
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2 Topology

Definition 2.1. Let X be a set. Let T be a subset of P (X). Then T is a topology if it is closed under:

• arbitrary (even uncountable) unions and

• finite intersections

and if

• X ∈ T and

• ∅ ∈ T .

If X has a topology T , then (X, T ) is called a topological space.

Definition 2.2. Let Γ be a collection of closed subsets of a topological space X. Then Γ has the finite
intersection property if every finite subcollection of Γ has non-empty intersection.

There are multiple characterization of compactness. A topological space X is compact if:

• Every open cover has a finite subcover.

• Every sequence has a convergent subsequence.

• Every collection of closed sets with the finite intersection property has a common point.

• For every collection of sets with the finite intersection property, there exists a point near (in the closure
of) each set.

• X is the continuous image of another compact topological space.

• it is a subset of a metric space, and is complete and totally bounded. (The latter means is can be
covered by finitely many sets of finite diameter.)

Theorem 2.3 (Tychonoff product theorem). An arbitrary product of compact topological spaces is compact.

Theorem 2.4. cts image of cpct is cpct

Theorem 2.5. cts image of connd is connd

Definition 2.6. A topological space is separable if it contains a countable dense subset.

Example 2.7. The rationals, which are countable, are dense in the reals (with the usual topology). Likewise
Rn (finite-dimensional Euclidean space). (Triv topo on any set since any singleton is dense.) (Cite Wikipedia
here . . . )

xxx need a non-example as well. Use the reals with the discrete topology? Infinite-dimensional Hilbert space
— separable iff it has a countable orthonormal basis?
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3 Metric spaces

Definition 3.1. metric space . . . .

Definition 3.2. A Borel function is a pointwise limit of a sequence of continuous real-valued functions
on a metrizable space.
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4 Calculus

Theorem 4.1 (Fundamental theorem of calculus). If F is an antiderivative of f , then∫ b

a

f(x)dx = F (b)− F (a).

Corollary 4.2. Writing F ′ = f and applying the FTC to f ′, we have∫ x

a

f ′(t)dt = F ′(x)− F ′(a)

= f(x)− f(a).

In particular, if f(0) = 0, then ∫ x

0

f ′(t)dt = f(x).

Theorem 4.3 (Second fundamental theorem of calculus). If

F (x) =
∫ x

a

f(t)dt,

then
F ′(x) = f(x).

Corollary 4.4.
d

dx

∫ x

a

f(t)dt = f(x).

The following is called the Extreme Value Theorem in [Ant]; at the graduate level, it becomes topological.

Theorem 4.5 (Extreme Value Theorem). A continuous real-valued function from a closed interval in R
attains its maximum and minimum values.

Proof. This is an elementary statement of the fact (theorem 2.4) that the continuous image of a compact
set is compact.

Theorem 4.6 (Intermediate Value Theorem). Let f be a continuous function from the closed interval [a, c]
to R. Let x = f(a) and z = f(c). If x < y < z or x > y > z then there is a < b < c such that y = f(b).

Proof. This is an elementary statement of the fact (theorem 2.5) that the continuous image of a connected
set is connected.

Rolle

Cor: MVT

xxx 1st, series
∑

an and tests. Then, power series.

Definition 4.7. A power series is a formal expression of the form

∞∑
n=0

anxn.
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Coefficients are taken to be in R or C. If we think of a power series as a function to R or C, respectively, we
immediately ask for what x’s the series converges to a real number. It is shown in [CB], for the complexes,
that there is a radius of convergence (perhaps 0, perhaps infinite) within which the series converges for
all x and outside of which it converges for no x. Behavior on the border circle is less simple and is not
addressed here.

Criteria [Ros] for finding the radius of convergence of
∑∞

n=0 anxn

• When the limit exists:

lim
∣∣∣∣ an

an+1

∣∣∣∣ .

• With the conventions that 1/∞ = 0 and 1/0 = ∞:

1
lim sup n

√
|an|

.

You can integrate and differentiate term by term anywhere inside the radius of convergence.

Three handy facts:

(1) The harmonic series diverges:
∞∑

k=1

1
k

= ∞

(2) The alternating harmonic series converges. Specifically:

∞∑
k=1

(−1)k

k
= ln(2).

(3) The square harmonic series (for lack of a better name) converges. Specifically:

∞∑
k=1

1
k2

=
π2

6
.

Remark 4.8. Here are some power series (all Maclaurin series) which we should recognize on sight:

• Exponential function:

1 + x +
x2

2!
+

x3

3!
+ . . . =

∞∑
n=0

xn

n!
= ex.

Its radius of convergence is infinite.

• Cosine:

1− x2

2!
+

x4

4!
− . . . =

∞∑
n=0

(−1)n x2n

(2n)!
= cos(x).

Its radius of convergence is infinite.

• Sine:

x− x3

3!
+

x5

5!
− . . . =

∞∑
n=0

(−1)n x2n+1

(2n + 1)!
= sin(x).
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• The geometric series:

1 + x + x2 + x3 + . . . =
∞∑

n=0

xn =
1

1− x
.

Its radius of convergence is 1.

• Log:

x− x2

2
+

x3

3
− x4

4
+ . . . =

∞∑
n=1

(−1)n−1 xn

n
= ln(1 + x).

Its radius of convergence is 1.

• Log:

x +
x2

2
+

x3

3
+

x4

4
+ . . . =

∞∑
n=1

xn

n
= − ln(1− x).

Its radius of convergence is 1.

Theorem 4.9 (Implicit function theorem). Let E be an open subset of Rm+n, and let f : E → Rn be a
vector-valued function which is continuously differentiable, i.e. of type C2. Let

(a,b) = (a1, . . . , am, b1, . . . , bn) ∈ E

be such that
f(a,b) = 0.

Let D be the n× n submatrix of the Jacobian of f given by ∂fi/∂xj, for i = 1, . . . , n and j = m + 1, . . . , n,
evaluated at b. If det(D) 6= 0, then there exists a neighborhood U of a and a unique C2 function g : U → Rn

such that
g(a) = b, i.e. f(a,g(a)) = 0,

and for all a′ ∈ U ,
f(a′,g(a′)) = 0.

That is, we can solve for the b variables at and near a.

Remark 4.10. The point is that, given a system of equations (for this course, usually a single equation),
we have an easy criterion for when we can solve for some variables in terms of the others. Note however that
the implicit function theorem ensures existence and uniqueness; actually finding the function g is another
matter.

Remark 4.11. The theorem, as stated, has the to-be-solved-for variable(s) written last. In practice, this
may not be the case. E.g. given a function f(v, w, x, y, z) : R5 → R2, we might want to solve for, say, v and
x. In that case, we would need to check the submatrix formed by the first and third columns of the Jacobian
of f . Furthermore, we might not know ahead of time which variables to solve for, until we apply the implicit
function theorem to various submatrices of the Jacobian.

Example 4.12. Let

f : R3 → R :

x
y
z

 7→ x2 + y2 + z2 − 1.

Here we have m = 2 and n = 1. Then the kernel of f is the sphere S2. Consider the north pole, (0, 0, 1),
written as

(a,b) = (a1, a2, b1) = (x, y, z) = (0, 0, 1).
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The Jacobian of f is (
2x 2y 2z

)
which evaluated at the north pole is (

0 0 1.
)

Now, there is only one 1×1 submatrix of this which is non-zero, namely, the last. So, there is a neighborhood
U of (0, 0) and a unique function g : U → R such that z = g(x, y). Here, it’s clear what this is: take

z = g(x, y) =
√

1− x2 − y2.

Theorem 4.13 (Inverse function theorem). Let E be an open subset of Rm, and let f : E → Rm be a vector-
valued function which is continuously differentiable, i.e. of type C2. If the Jacobian of f is nonsingular at
a point q of E, then there exist open neighborhoods U of q and V of f(q) such that f is a diffeomorphsim
from U into V .

Remark 4.14. The point is that, even if such a function f is wildly non-linear, to check for invertibility at
a point it suffices to make the much simpler check of the invertibility of the linearization of f .

[xxx where to file] interchange limit and riemann integral
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5 Measure spaces and measures of sets

Definition 5.1. Let X be a set. Let A be a subset of P (X). Then A is a σ-algebra if it is closed under:

• countable unions,

• countable intersections, and

• complements,

and if

• X ∈M and

• ∅ ∈ M.

Note that a σ-algebra needs to tolerate more intersections than a topology on the same space (countably
infinitely many, not just finitely many), but needs to tolerate fewer unions (countably infinitely many, not
uncountably many).

Definition 5.2. A σ-ring is similar to a σ-algebra but need only be closed under countable unions. Also it
need not contain all of X.

Definition 5.3. Let (X, T ) be a topological space. Let B be the smallest σ-algebra containing T . Then B
is the Borel σ-algebra for (X, T ). (We say B is the Borel σ-algebra generated by the topology T .)

Definition 5.4. A Borel set is an element of a Borel σ-algebra. That is, a Borel set is obtained from open
sets by countable intersections, countable unions, and complements (in any order).

Definition 5.5. Let X be a set with a σ-algebra M. A (set) measure on (X,M) is a function µ : M→
[0,∞] such that

• µ(∅) = 0, and

• If {Ej}∞j=1 is a sequence of disjoint sets in M then

µ
(
∪∞j=1Ej

)
=

∞∑
j=1

µ(Ej).

This is the countable additivity property.

Remark 5.6. If {Ej}∞j=1 is a sequence of sets in M which is not necessarily disjoint, then

µ
(
∪∞j=1Ej

)
≤

∞∑
j=1

µ(Ej).

This is the countable subadditivity property.

Mnemonic 5.7. Measure closed intervals [a, b] in R by µ([a, b]) = b− a. Let E1 = E2 = [0, 1]. Then

µ(E1 ∪ E2) = 1 ≤ 2 = 1 + 1 = µ(E1) + µ(E2).

The subadditivity of measure of non-disjoint sets comes from the overcounting that happens when sets
overlap.

10



Definition 5.8. If

• X is a set, and

• M is a σ-algebra on X, and

• µ is a non-negative countably additive set function,

then (X,M, µ) is called a measure space.

Remark 5.9. Ideally we’d want to be able to “measure” the size of any subset of any set X. That is,
instead of σ-algebras of X, we’d simply use all of P (X). However, it can be shown ([Fol], chapter 1) that
this is too much to hope for. Thus we restrict ourselves to measuring elements of something (much) smaller
than all of P (X).

Definition 5.10. Let X = R with the Borel σ-algebra. Then Lebesgue measure of a closed interval [a, b]
is b− a, written

λ([a, b]) = b− a.

Likewise, on Rn, Lebesgue measure of a cube is given by its volume.

Remark 5.11. Obviously this only tells us how to measure intervals and cubes. Other sets are measured
by approximating them from within and without. (Making this simple, intuitive statement precise occupies
entire chapters of [Jon], and also takes up significant space in the other cited references. The most concise
treatment of the four authors is Rudin’s.) More precisely ([Jon], ch. 2), we measure open sets by approxi-
mating them from within by combinations of cubes. Then a set E of X is measurable iff for all ε > 0 there
are closed and open sets F , G respectively such that

F ⊆ E ⊆ G

and such that λ(G\F ) < ε. Always remember that at its simplest — details and distractions notwithstanding
— on Euclidean spaces, Lebesgue measure is volume.

Remark 5.12. For Rn, the class of Borel sets of X is contained in the set of Lebesgue-measurable sets. See
[Jon], ch. 5, for an example. That is, for Euclidean space, all Borel sets are measurable. Not all measurable
sets are Borel.

Definition 5.13. Let (X,M, µ) be a measure space. Then µ is said to be a finite measure if µ(X) < ∞.

For example, take X to be the unit interval, with Lebesgue measure. Then µ(X) = 1. For a non-example,
take X to be R, with Lebesgue measure.

Definition 5.14. Let (X,M, µ) be a measure space. Then µ is said to be a σ-finite measure if there is
an increasing sequence of sets Ej ↑ X (in particular I mean ∪jEj = X) such that µ(Ej) < ∞.

Example 5.15. For an example, take X to be R, with Lebesgue measure, and Ej = [−j, j]. For a non-
example, take X = R with counting measure, i.e. µ({q}) = 1 for all singletons. It takes uncountably many
points q to cover R.
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6 Integration (measures of functions)

Definition 6.1. The extended real number system is R̃ = R ∪ {−∞,+∞}.

Definition 6.2. Let (X,M, µ) be a measure space, and let f : X → R̃. Note that while X has its σ-algebra
M, R̃ has the standard Borel σ-algebra B. The function f is said to be Lebesgue measurable if any of
the following (which are equivalent) hold:

• For all B in B, f−1(B) is a measurable set in X. (That is, preimages of measurable subsets are
measurable subsets.)

• For all closed intervals [a, b] of R̃, f−1([a, b]) is a measurable set in X.

• For all a ∈ R, {x ∈ X : f(x) > a} is a measurable set in X.

• For all a ∈ R, {x ∈ X : f(x) ≥ a} is a measurable set in X.

• For all a ∈ R, {x ∈ X : f(x) < a} is a measurable set in X.

• For all a ∈ R, {x ∈ X : f(x) ≤ a} is a measurable set in X.

Remark 6.3. Lebesgue measurability is distinct from Lebesgue integrability (below).

Remark 6.4. The set of measurable functions is closed under pointwise sums, differences, and products,
pointwise absolute value, pointwise max and min, pointwise limits, but not composition.

Definition 6.5. Let (X,M, λ) be as above. A function f : X → R̃ is a simple function iff f(X) is finite.
(Think of step functions, and indicator functions of sets.)

Definition 6.6. Let (X,M, λ) be as above, and let E : X → R̃ be a simple function. Let e1, . . . , en be the
finite number of points in E(X). The Lebesgue integral of E is defined to be

λ(E) =
∫

X

Edλ =
n∑

j=1

ejλ(f−1(ej))

where the λ on the left-hand side is a function measure, and the λ on the right-hand side is a set measure.
(Think of computing the areas of step functions. This seems not too different from the Riemann integral,
until you consider, say, the simple functions which is the indicator of the rationals on the unit invterval.)

Definition 6.7. Let (X,M, λ) be as above and let f : X → R̃. The Lebesgue integral of f is obtained
by approximating f by simple functions:

sup
L≤f

λ(L) = inf
U≥f

λ(U),

with the sup and inf taken over all simple functions L and U , then

λ(f) =
∫

X

fdλ

is equal to this common value. More practically, Namely, let Lk ↑ f and Uk ↓ f . If

lim
k→∞

λ(Lk) = lim
k→∞

λ(Uk)

then we write
λ(f) = lim

k→∞
λ(Lk) = lim

k→∞
λ(Uk).

I believe that this is the essential picture, modulo some fuss about details and corner cases. Note in particular,
though, that we only attempt any of this for functions which are Lebesgue measurable.
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Construction of the Lebesgue integral (Assane Lo calls this the standard machine):

• Characteristic functions

• Simple functions

• Non-negative measurable functions

• Arbitrary measurable functions: λ(f) = λ(f+) − λ(f−). This is defined if at most one of λ(f+) and
λ(f−) are finite. Otherwise, we have an ∞−∞ situation.

Remark 6.8. When the qual problems ask to show that something is not Lebesgue integrable, typically
one of two techniques will suffice:

• Show that
∫

f+ and
∫

f− are both infinite. (An example of this is below.)

• For two-variable integrals, if you can show that
∫ ∫

f(x, y)dx dy and
∫ ∫

f(x, y)dy dx are different, then
f is not Lebesgue integrable.

Example 6.9. The function f(x) = x is Lebesgue measurable but not Lebesgue integrable: f−1([a, b]) =
[a, b] which is measurable in R. However,

∫∞
−∞ f+(x)dx and

∫∞
−∞ f−(x)dx are both infinite.

Remark 6.10. Why isn’t ∫ ∞

−∞
x dx = 0?

Isn’t this just

lim
a→∞

∫ a

−a

x dx,

which is clearly zero? The problem is in how we go to infinity; the integral balances on a knife edge. If we
take

lim
a→∞

∫ 2a

−a

x dx,

then we get something different. Going to infinity symmetrically, via

lim
a→∞

∫ a

−a

x dx,

is the Cauchy principal value of the integral. This becomes more clear when we consider

sgn(x) =


1 x > 0
0 x = 0
−1 x < 0.

Clearly the principal value of the integral is zero, via

lim
a→∞

∫ a

−a

sgn(x)dx,

but it could be any t via

lim
a→∞

∫ a+t

−a

sgn(x)dx.

Specifically, this example shows that the Cauchy principal value is not translation invariant.

Example 6.11. The function f(x) = sin(x)/x is not Lebesgue integrable on (0,∞). We need f+ and f− to
each be integrable. [xxx type up the details about bounding sin(x)/x below by sin(x)/2nπ on [2nπ, (2n+1)π]
and obtaining the (divergent) harmonic series.]
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7 Theorems and inequalities for integration

Fact:
|µ(f)| ≤ µ(|f |).

Mnemonic 7.1. How to remember which way the signs go? Use sine on [0, 2π]:∣∣∣∣∫ 2π

0

sin(x)dx

∣∣∣∣ = 0 ≤
∫ 2π

0

| sin(x)|dx = 2
∫ π

0

sin(x)dx = 4.

On the left, the up-hump and the down-hump cancel to zero. On the right, the pair of up-humps gives a
positive area.

Mnemonic 7.2. Another mnemonic: I call this the toothpaste theorem, since when you squeeze it, more
comes out: ∣∣∣∣∫ f(x)dx

∣∣∣∣ ≤ ∫
|f(x)| dx.

xxx need Chebyshev inequality?

Fundamental norm identity:

‖u + v‖2 = ‖u‖2 + 〈u, v〉+ 〈v, u〉+ ‖v‖2;
‖u− v‖2 = ‖u‖2 − 〈u, v〉 − 〈v, u〉+ ‖v‖2.

Real case:

‖u + v‖2 = ‖u‖2 + 2〈u, v〉〉+ ‖v‖2;
‖u− v‖2 = ‖u‖2 − 2〈u, v〉〉+ ‖v‖2.

Triangle inequality:

‖u± v‖ ≤ ‖u‖+ ‖v‖.

Reverse triangle inequality:

‖u± v‖ ≥ | ‖u‖ − ‖v‖ |.

Together:

| ‖u‖ − ‖v‖ | ≤ ‖u± v‖ ≤ ‖u‖+ ‖v‖.

Parallelogram law:

‖u + v‖2 + ‖u− v‖2 = 2‖u‖2 + 2‖v‖2.

Cauchy-Schwartz inequality:

|〈u,v〉|2 ≤ 〈u,u〉〈v,v〉
|〈u,v〉| ≤ ‖u‖2 ‖v‖2

See also Cauchy-Schwarz for functions: proposition 9.10.

An elementary but handy inequality:
ab ≤ a2 + b2.
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Proof.

0 ≤ (a− b)2

0 ≤ a2 − 2ab + b2

2ab ≤ a2 + b2

ab ≤ a2 + b2

2
≤ a2 + b2.

Definition 7.3. A function is absolutely continuous if it is continuous and is an indefinite integral.

Theorem 7.4 (Monotone convergence theorem). If fn ≥ 0 and f ≥ 0, and if fn ↑ f pointwise, then
µ(fn) ↑ f .

xxx note rel’nship with countable additivity (1-11 notes).

Theorem 7.5 (Improved monotone convergence theorem). If −∞ < f1, and if fn ↑ f pointwise, then
µ(fn) ↑ f .

Theorem 7.6 (Fatou’s lemma). Let (X,M, µ) be a measure space. [xxx do we assume µ is Lebesgue measure
λ?] Let fn be a sequence of non-negative measurable functions. If

f(x) = lim inf
n→∞

fn(x)

then
lim inf
n→∞

∫
X

fndµ ≥
∫

X

fdµ

i.e.
lim inf
n→∞

∫
X

fndµ ≥
∫

X

lim inf
n→∞

fndµ.

Mnemonic 7.7. One can only lose mass by moving the limit inside the integral. One may make this
mnemonic embarrassingly more memorable by matching the fat in Fatou with weight loss.

Mnemonic 7.8. To remember which way the signs go, let

fn = 1[n,n+1].

These are little squares with height one, starting at x = n. The integral of each is of course one, but the
pointwise limit of the fn’s is f = 0. (The unit mass gets shifted off to infinity and so is lost in the limit.)

Theorem 7.9 (Dominated convergence theorem (DCT), or Lebesgue dominated convergence theorem
(LDCT)). Let (X,M, µ) be a measure space. Let fn be a sequence of measurable functions on X. Let
g ≥ 0 be in L1(X). Suppose the pointwise limit of fn exists for all x ∈ X, say to f . If

|fn(x)| ≤ g(x)

for all x ∈ X, then f ∈ L1(X) and ∫
fdµ = lim

∫
fndµ.

Remark 7.10. That is, if the fn’s are dominated in absolute value by a function in L1, then we can move
the limit through the integral.
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Theorem 7.11 (Tonelli’s theorem). Let (X, µ) and (Y, ν) be σ-finite measure spaces. If f is a non-negative
real-valued function on X × Y , then∫

X

[∫
Y

fdν

]
dµ =

∫
X×Y

fd(µ× ν) =
∫

Y

[∫
X

fdµ

]
dν.

Theorem 7.12 (Fubini’s theorem). Let (X, µ) and (Y, ν) be complete measure spaces. If f ∈ L1(X × Y ),
i.e. if ∫

X×Y

|fd(µ× ν)| < +∞,

then ∫
X

[∫
Y

fdν

]
dµ =

∫
X×Y

fd(µ× ν) =
∫

Y

[∫
X

fdµ

]
dν.

When can we write
d

dt

∫ b

a

φ(x, t) dx =
∫ b

a

∂φ(x, t)
∂t

dx?

Theorem 7.13 (Differentiation under the integral sign: [Rud] p. 237). Let φ(x, t) : [a, b] × [c, d] → R. If
the following are true:

• for all t, φ is integrable along x, and

• there is an s ∈ [c, d] such that ∂φ/∂t is continuous for all x ∈ [a, b] and for all t in some open interval
around s,

then [
d

dt

∫ b

a

φ(x, t) dx

]
t=s

=
∫ b

a

[
∂φ(x, t)

∂t

]
t=s

dx.

Here is an alternate characterization which Assane has been using.

Theorem 7.14 (Differentiation under the integral sign). Let φ(x, t) : [a, b]× [c, d] → R. If the following are
true:

• ∂φ/∂t exists almost everywhere,

• |∂φ/∂t| < F for some integrable F , and

• φ(x, t) is integrable,

then [
d

dt

∫ b

a

φ(x, t) dx

]
t=s

=
∫ b

a

[
∂φ(x, t)

∂t

]
t=s

dx.

[xxx elaborate on the following heuristic: when we have an integral problem with two parameters, e.g. e−st

somewhere in the integrand, go ahead and differentiate it, then move the derivative inside and hope the view
improves.]
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8 Weighted integrals

Definition 8.1. The Riemann integral is familiar from calculus.

The Riemann-Stieltjes integral is a Riemann integral with a weight function. Example: Let f(x) = x
and w(x) = 1/(1 + x2). Then integrate f with w as weight. This is just∫ ∞

−∞
f(x)w(x)dx.

Notation: Let W (x) be an antiderivative of w(x), namely

W (x) =

{
λ((0, x]), x ≥ 0
−λ((x, 0]), x < 0.

Then we write ∫ ∞

−∞
f(x)dW (x) =

∫ ∞

−∞
f(x)w(x)dx.

Mnemonic 8.2. How to remember this? The usual (uniformly weighted) Riemann integral uses w(x) = 1,
with W (x) = x. Then we think of

dW (x) =
dW

dx
dx = w dx = dx.

This is just a mnemonic for the special case of continuous w(x), though — the Riemann-Stieltjes construction
works for W (x) that aren’t even continuous. [xxx something — use an example — of W with steps. Use
these to obtain point masses.]

Definition 8.3. The Lebesgue-Stieltjes integral: direct analogy?

xxx say how to construct it for any non-decreasing (LSC?) W .
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9 Functional analysis

Definition 9.1. Let 1 ≤ p ≤ ∞. Let (X,M, µ) be a measure space. For a real-valued function f : X → R,
we write

‖f‖p =
[∫

X

|f |p dµ

]1/p

.

for the norm of f .

Definition 9.2. Let 1 ≤ p ≤ ∞. Let Y denote the set of infinite complex-valued (or complex-valued)
sequences. For a sequence x = (x1, x2, x3, . . .) ∈ Y , we write

‖x‖p =

[ ∞∑
k=1

|xk|p
]1/p

.

for the norm of f .

Mnemonic 9.3. This generalizes the familiar square-root-of-sum-of-squares computation in the Euclidean
distance formula.

Definition 9.4. Let 1 ≤ p ≤ ∞. Let (X,M, µ) be a measure space. We write Lp(X) for the class of
real-valued functions on X such that

‖f‖p < ∞.

Define an equivalence relation whereby f ∼ g iff f = g almost everywhere. We write

Lp(X) = Lp(X)/ ∼ .

Definition 9.5. We write `p(R) for the set of real-valued infinite sequences x = (x1, x2, x3, . . .) such that

‖x‖p < ∞.

Definition 9.6. A Banach space is a vector space which is normed and complete.

Mnemonic 9.7. Q: What’s yellow, normed, and complete? A: A Bananach space.

Definition 9.8. A Hilbert space is a Banach space which is also an inner product space.

Proposition 9.9 (Hölder’s inequality).

‖fg‖1 ≤ ‖f‖p ‖g‖q

with 1/p + 1/q = 1.

With p = q = 2 we have the following:

Corollary 9.10 (Cauchy-Schwarz inequality).

‖fg‖1 ≤ ‖f‖2 ‖g‖2.

Remark 9.11. To use Hölder, one needs a product of two functions. Whenever we see an integral inequality
using Lp norms, and if there is a single function f on the left-hand side, we can expect that we will need to
insert g = 1, so that ‖f‖1 becomes ‖f · 1‖1.

Proposition 9.12. ‖f‖p
p = ‖fp‖1.
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Proof.

‖f‖p
p =

[(∫
|f |p

)1/p
]p

=
∫
|f |p =

∫
|fp| = ‖fp‖1.

Proposition 9.13 (Minkowski inequality).

‖f + g‖p ≤ ‖f‖p + ‖g‖p.

Theorem 9.14 (Projection theorem). Let H be a Hilbert space and let M be a closed subspace of H. If
u ∈ H then there is a unique vector v in M closest to u. In particular, u− v is perpendicular to M .

Definition 9.15. A linear functional λ is said to be bounded if there is M ∈ R such that for all x ∈ H,
λ(x) ≤ M‖x‖.

Theorem 9.16 (Riesz-Fréchet representation theorem). In a Hilbert space, all bounded linear functionals L
come from a u∗.

Example 9.17. How could a linear functional failed to be bounded? How “linear” could such a functional
be? In finite dimensions, this isn’t possible. However, it is possible in infinite dimensions it is. Take a
separable Hilbert space H — it then has a countable basis {e1, e2, . . .}. Let λ(ek) = k, and extend linearly
from the basis to all of H. This is clearly unbounded.

Remark 9.18. This is a familiar fact from finite-dimensional vector spaces: all linear functionals may be
represented by row vectors.

Definition 9.19. Let H be a Hilbert space. Let un be a sequence in H, and let u ∈ H. Then un converges
to u weakly iff for all v ∈ H,

〈un, v〉 → 〈u, v〉.

We say that un converges to u strongly if

‖un − u‖ → 0.

Example 9.20. An infinite orthonormal sequence converges weakly to zero, but not strongly.

Definition 9.21. strong topology . . . .

Definition 9.22. Let E be a Banach space. The weak topology on E is the coarsest topology such that
every element of E∗ is continuous.

Definition 9.23. Let E be a Banach space. The weak* topology on E∗ is the coarsest topology such
that every element of E∗∗ is continuous.

Definition 9.24. A sequence of functions fn is said to converge in measure if for all ε > 0 there is N
such that for all n ≥ N ,

µ{x : |f(x)− fn(x)| > ε} < ε.
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10 Fourier analysis

xxx needs elaboration

Definition 10.1. Write
〈f, g〉 =

∫
fg.

Remark 10.2. Note that
‖f‖22 = 〈f, f〉.

Definition 10.3. For f(x) ∈ L2 (usually on [0, 1] or R), and for basis functions bk(x),

f̂(k) = 〈f, bk〉.

Remark 10.4. For f(x) ∈ L2([0, 1]), basis functions bk(x) may be taken to be ei2πkx for k ∈ Z. For
f(x) ∈ L2(R), the k’s may take on any real value.

Definition 10.5. We write
f(x) ∗ g(x) =

∫
f(x− y)g(y)dy.

This is the convolution of f and g.

Proposition 10.6 (Convolution for Fourier integrals). Let F denote the Fourier transform. Then

F(g ∗ h) = F(f) · F(g).

That is,
ĝ ∗ h = ĝĥ.

Remark 10.7. The saying is that convolution in the time domain is multiplication in the frequency domain.

Proposition 10.8 (Bessel’s inequality, Parseval’s identity, and Plancherel’s theorem). Let H be a Hilbert
space. Let f ∈ H and let bk, k = 1, 2, 3, . . ., be a sequence of orthonormal vectors in H. Then

∞∑
k=1

|〈f, bk〉|2 ≤ ‖f‖2.

This is Bessel’s inequality. If the bk’s are furthermore a basis for H, then we have Parseval’s identity:
∞∑

k=1

|〈f, bk〉|2 = ‖f‖2.

This is a special case of Plancherel’s theorem. (This statement of Plancherel is due to Assane Lo. See
also remark 10.11 below.) Namely, for f, g ∈ H,

∞∑
k=1

f̂(k)ĝ(k) = 〈f, g〉.

(Bessel and Parseval then follow for f = g, recalling that ‖f‖2 = 〈f, f〉 and f̂(k) = 〈f, bk〉.)
Remark 10.9. The context of this remark is a closed interval of the real line (nominally, the unit interval).
Then f(x) ∈ L2([0, 1]) and f̂(k) ∈ `2(2πZ). Using Fourier series we reconstruct f as a linear combination of
the orthonormal basis, where the kth coefficient is the dot with the kth basis vector. That is,

f =
∞∑

k=1

〈f, bk〉bk. (∗)

Parseval’s identity guarantees that this series converges when the bk’s form a basis for H. Parseval’s identity
may be paraphrased by saying that when we insert norms in (∗), we still have an equality.
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Mnemonic 10.10. Engineers routinely paraphrase Parseval’s identity by saying that the power in the time-
domain spectrum is the same as the power in the frequency-domain spectrum. Briefly: power in equals power
out.

Remark 10.11. Faris and Wikipedia both state Plancherel’s theorem by saying that if f ∈ L1(R, dx) ∩
L2(R, dx), then f̂ ∈ L2(R, dk/2π). Here, we are taking the Fourier transform from R to R, so both x and k
are allowed to take all real values.

Proposition 10.12 (Riemann-Lebesgue lemma). If f ∈ L1([0, 1]), then f̂(k) → 0 as k →∞.
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11 Radon-Nikodym derivatives

Definition 11.1. Let (X,A, µ) and (X,A, ν) be measure spaces (on the same set — same σ-algebra too?).
Assume that µ and ν are σ-finite. Also assume that ν is signed and µ is positive. The measure ν is said to
be an absolutely continuous measure with respect to µ, written

ν � µ,

if
µ(E) = 0 =⇒ ν(E) = 0.

Example 11.2. Let ν be Lebesgue measure on X = [−1, 1] (with the Borel σ-algebra) and let µ be µ + δ0.
Let E ⊆ X. If 0 ∈ E, then µ(E) = 1. If 0 6∈ E, then µ(E)ν(E). Thus ν � µ.

Definition 11.3. We say h is the Radon-Nikodym derivative of ν with respect to µ, written

h =
ν

µ
,

if for all measurable subsets E of X,

µ(E) =
∫

E

dν =
∫

E

h dµ.

Theorem 11.4 (Radon-Nikodym derivatives exist). If ν � µ as above, then a Radon-Nikodym derivative
exists.

Example 11.5. Let µ and ν be as in example 11.2. Then take h(x) = dν/dµ to be 1 if x 6= 0 and 0 if x = 0.
That is, h is designed to pluck out 0, the one spot at which µ and ν differ.
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12 Radon measures

Radon measures

Riesz representation for Radon measures.

Pair Radon measure µ with continuous function f : 〈µ, f〉.

Why Radon measures?
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13 Farisisms

Definition 13.1. A lattice is poset P such that for all a, b ∈ P , a ∧ b and a ∨ b are in P .

Definition 13.2. A Stone vector lattice is:

• A vector space L of real-valued functions (i.e. for f, g ∈ L and a ∈ R, f + g and af are in L),

• which is a lattice (f ∧ g is pointwise sup and f ∨ g is pointwise),

• with the Stone property, namely, for all f ∈ L, f ∧ 1 ∈ L (“locally constant”).

Definition 13.3. A σ-ring of real-valued functions on a set is a Stone vector lattice which is closed under
pointwise convergence.

Definition 13.4. A σ-algebra of real-valued functions on a set is a σ-ring which also contains constant
functions. (By linearity, if 1 ∈ L, then all constant functions are in L.)

Definition 13.5. An elementary integral is linear, order-preserving, and satisfies monotone convergence.
[xxx state this precisely.]

Mnemonic 13.6. L-O-M — eLOMentary integral — linear, order-preserving, monotone convergence.

Theorem 13.7 (Dini’s theorem). Let K be a compact topological space. Let fn be a sequence of continuous
real-valued functions on K such that fn → 0. Then fn → 0 uniformly.
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14 Problem solutions

14.1 HW 15.1

HW 15.1 — two steps.

14.2 A02.6A

A02.6A — a beautiful example of many things.

14.3 A02.4B

Let f be a continuously differentiable real-valued function on [0, 1] with f(0) = 0. Prove the inequalities:

(i) |f(x)| ≤ x1/q‖f ′‖p, x ∈ (0, 1) and

(ii) ‖f‖p
p ≤

1
p
‖f ′‖p

p

where 1 < p < ∞, ‖ · ‖p is the Lp(0, 1)-norm, and 1/p + 1/q = 1.

Answer. With regard to the free-association principle mentioned in section 1, several things should imme-
diately come to mind. First, when we see f and f ′ together, especially with the f(0) = 0 item, we should
think of the corollary to the FTC (corollary 4.2)∫ x

0

f ′(t)dt = f(x).

Second, integral inequalities with Lp norms in them should lead us to Hölder’s inequality (proposition 9.9).
Since there is only a single function f involved, we may need to insert a 1 at some point, as mentioned in
remark 9.11. Lastly, the toothpaste theorem (see mnemonic 7.2) is used in many integral problems.

So, let’s start:

f(x) =
∫ x

0

f ′(t)dt

|f(x)| =
∣∣∣∣∫ x

0

f ′(t)dt

∣∣∣∣ ≤ ∫ x

0

|f ′(t)| dt =
∫ x

0

|1 · f ′(t)| dt

≤
[∫ x

0

1q dt

]1/q [∫ x

0

|f ′(t)|p dt

]1/p

(we knew we needed a p)

≤ x1/q

[∫ 1

0

|f ′(t)|p dt

]1/p

(approximate to get the p-norm we need)

= x1/q‖f ′‖p.

For part (ii), we could start at the same spot as we did in part (i) and follow our noses. Or, since we need
to get the p-norm of f on the left, and we have |f |, we can raise the left-hand side of the part (a) result to
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the pth power and integrate:

|f(x)| ≤ x1/q‖f ′‖p∫ 1

0

|f(x)|p dx ≤
∫ 1

0

xp/q‖f ′‖p
p dx.

What is p/q? Since 1/p + 1/q = 1, we have

p/q = p− 1.

Also, ‖f ′‖p
p is a constant and so comes out of the right-hand integral. We’re left with

‖f‖p
p ≤

∫ 1

0

xp−1dx ‖f ′‖p
p =

[
xp

p

]1

0

‖f ′‖p
p =

1
p
‖f ′‖p

p

as desired.
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