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Abstract

This is a reference sheet, vocabulary sheet, and to-do list for my spring 2008 independent study course
under Janek Wehr on quantum networking theory. This paper is under construction.
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xxx 541 notes!!!

Xxx cite 541

xxx intro-to-QM (fin dim) disclaimer — for me as learner.

xxx “states” vs. [??7] — make the pre-observation and post-observation vocabulary clear and consistent.

xxx change (.,.) to bra-ket notation throughout.

1 Introduction

This is a reference sheet, vocabulary sheet, and to-do list for my spring 2008 independent study course under
Janek Wehr on quantum networking theory. For notation and terminology, please see [Kerl] (probability)
and [Ker2] (basic quantum mechanics).

2 Single qubits

2.1 Single-qubit state space

(1) (1)

two-level quantum system. Make the distinction between physical implementations (which vary) and
the mathematical abstraction (which is clean and simple).

Bloch sphere. Include figure ...
measurements. Two uses: input preparation, and output assessment.

Need algebra of matrices to invent “really good measurements”.

2.2 Single-qubit operators

Observable: self-adjoint operator on the state space.
Measurement: the observable’s spectral projector.

Work out some examples.

2.3 Lack of time evolution for quantum computation

Time evolution is generated by the Hamiltonian. Here the Hamiltonian is zero: e!’* = I. Or eigenstate

of the Hamiltonian.
Cite [Ker2].

physics kitchen ...type up notes.



3 Multiple qubits

3.1 Multiple-qubit states

linear combinations

binary/unary diagram — a key concept (for me anyway).
entanglement as indecomposability of tensor.

EPR pair ...

measurements of entanglement

maximally entangled

Bell state

singlet conversion

singlet conversion probability

pure states and mixed states. density operator.

emph distinction between pure state, mixed state, and entangled state.

P:ij | ;) (o5 |

with sum;jp; = 1. Note that p is said to be a trace-class operator. [xxx def and xref. This is a trivial
distinction in finite dimensions.] [xxx p; = (¥; | ¥;) = ||v;]|*7]

Pure state: rank-one projection. Iff p? = p.
(A) =2 (¢ | Al ;) = talpA]
J

spectral resolution (when does it exist?)
P = ai)(ai |

A:ZGZR :Zai | ai><ai|

3.2 Multiple-qubit operators



4 Entanglement

Definition 4.1. A separable state is a decomposable tensor; a entangled state is an indecomposable
tensor.

[xxx rank notion, and examples]

[xxx triviality of determining entanglement in the finite-dimensional case. Only for rank-two tensors? More
difficult for higher-rank tensor products?]



5 Quantum teleportation

teleportation. Alice and Bob. Draw up the figure.

Cite result [NC]J: this can be done with maximum entanglement. It cannot be done (p < 1) without
maximum entanglement. Include the proof.



6 Entanglement swapping

Open question: how to do entanglement swapping when input states are mixed.

6.1 Lattices

lattice

6.2 Triangles

draw the figure.
Such a thing can be constructed. star-triangle formulation. Cite.
Explicitly write down the preparation matrix.

Open question: to what use can such a thing be put?



A Tensor products and Kronecker notation

Keep it brief and practical. State (with don’t-be-scared caveat) the abstract-algebra definition. Then
immediately give examples showing that these are just pairs (or n-tuples) with the manipulation rules
(which is the practical meaning of the equivalence relations) of scalar-through and multilinearity. These give
different ways to write the same thing, and give us some flexibility for computations.

Lift stuff from prolrev.

decomposable tensors. xref both ways between this and entangled states in QM.

A.1 Tensor products and array notation

Tableaux for tensor product of vectors. Lift from prolrev.

A.2 Kronecker notation

Work out a quick 2 x 2 example of why this is the right thing to do.

A.3 Linear operators on tensor products
(A B)(u®v) := (Au) ® (Bv)

work it out by expansion of eigenbases. Use u and v for this appx; also be sure to use u; and v; for coeffs.

Kronecker product

XXX:
k

(Au)l = A A Asgs Uy

7 (Au)2 7 A21 A22 A23 k Ug

(All)s Azr Az Asz us

Mnemonic: adjacency of coefficients in 2nd argument of vkron, so B is blocked tighter.

(A11B11 A1 By A12Byy A12312\| (Uﬂh\

A11By; A1 By A1aBy1 A1aBas | | wivs

kAmBu Az By Ao Byy A22B12} kuzvl)
A1 Bay A1 By AxaBy1 Az By U2V2

(AllB ‘ AlgB\ urv
\Ang ‘ AQQB/ usv




A.4 Inner products on tensor products

xxx present this as a special case of the above:
(a@b),(c®d)) = (a,c)(b,d).
B Trace and partial trace

do it in the kronecker rep too. 2 x 2 on A and B.
type up the handwritten notes.

I think left-partial is trace within blocks; right partial is sum of blocks.

tnm(é f;) = (trE)A) tr(OD))

tr1right ( A B ) = A + D?

Is this just

and

C D

Work out some computational examples. And of course code it up. :)

C Density operators

Definition C.1. An ensemble is a list of n state vectors {¢1,...,¢,} along with respective probabilities
{p1,...,pn} with0<p; <land > .  p; =1

One may think of an ensemble as a probability mass function.
Definition C.2. A density matrix is a positive-definite matrix with trace 1.

Proposition C.3. An n x n density matriz may always be obtained from an ensemble by
n
p=> pildi)(dil.
i=1

Proof. xxx type it up. O

Proposition C.4. An n x n density matriz may be obtained from a state ¥ and a basis {¢1,...,¢n} by
p=> il i)l
i=1

where

pi = (| ¢i)|>.

Proof. xxx type it up. O



Remark C.5. Two different ensembles can give the same density matrix. N&C give a theorem characterizing
the conditions under which this can happen. [xxx type this up and include examples.]

Definition C.6. A state 1 is said to be a pure state with respect to an ensemble {¢1, ..., ¢, } if it is equal
to one of the ¢;’s. Otherwise it is said to be a mixed state.

Remark C.7. Pure and mixed states have no meaning except with respect to a specified ensemble. A state
that is pure with respect to one ensemble may be mixed with respect to another.

Proposition C.8. A density matriz p has tr(p) = 1. Furthermore, if p is a density matriz for a state i
and a basis {P1,...,¢n} (as in the statement of proposition , then tr(p?) < 1, with equality if and only
if ¥ is pure with respect to the basis.

Proof. For the duration of this proof, index the basis vectors as
{oW,..., 6™}
Then subscripts will denote elements of a vector. For example, if (1) = (0.6,0.8), then ¢51) =0.8.

By proposition there is an ensemble such that
p=> pr| o™ ) ("W ].
k=1

Now, each | ) )(¢®*) | is an outer-product matrix with ijth entry equal to

n

(16 (6® )iy = 3 0"

k=1

Since the trace of an n x n matrix A is tr(A) =Y.' | A;;, we have
n
tr(p) = Z Pii
i=1

=> > oo
i=1 k=1

=> "y, B
k=1

=1

n
= pillo®]
k=1

For the second claim, first note that for an n x n matrix A, we have

tr(A?) = i i AijAji.

i=1 j=1

10



Then
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Now, since I assume the basis is orthonormal, we have
Zpk ZPHSM Zpi
k=1 ¢=1 =1

To finish the proof, note that >, _, p7 is the diagonal part of (3, _, px)?. We have

nk:1n
=>_ > pipe
k=1 /(=1
n n
=3 "pepe+ >k
=1 0k =1

If only one py is 1, then we clearly have equality. Note that all the terms in the sum are non-negative. If two
pr’s are non-zero (say, p1 and po) then the off-diagonal term is non-zero, so the diagonal sum is less than
1. O

Remark C.9. The trace tr(p) is basis-independent; tr(p?) is basis-dependent. For example, let

If

then

11



On the other hand, if
a=(18) = o= )

p—< 1(/)2 192 ) e —< 1(/)4 194 ) r(p) =1, and tr(p?) = 0.5.

Remark C.10. In the finite-dimensional case, determining purity of a state is trivial: form the density
matrix p and compute tr(p?). This is 1 iff ¢ is pure.

then

12
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