
CONCRETE ABSTRACT ALGEBRA IN PYTHON

John Kerl

University of Arizona

Department of Mathematics

Software Interest Group

April 5, 2006

1

Overview

• History

• Python basics

• Concrete groups

• Algorithms for abstract groups

2

History

SACK: simple algebra calculator.

Previous version was written in C during a senior-level
undergraduate course in abstract algebra. Naive algo-
rithms; short feature list.

Imitates Unix bc program: If the computer can multi-
ply 10981765243 and 76452183109, then it ought to be
able to compose the permutations (10 9 8)(1 7)(6 5 2)(4 3)
and (7 6)(4 5)(2 1 8 3)(10 9).

Joubert: “To teach is to learn twice.” I wrote SACK
from scratch and learned many things in the process,
which I would not had I stuck solely with programs such
as GAP.

3

Python . . .

. . . is an object-oriented (illustrated by example in this

paper) scripting (not compiled as a separate step, though

Perl and Python do just-in-time compilation) language.

We have many mathematical software tools: Mathe-

matica, Maple, MATLAB, etc. Python on the other

hand is a general-purpose language. However, it

is intutive and math-friendly (e.g. lists and complex

floating-point numbers).

Sometimes there is no pre-existing tool or library for a

particular problem and we need to program. Python is

good as a first programming language.

4

More information

These slides are a condensation of:

http://math.arizona.edu/~kerl/doc/kerl-pyaa.pdf

For a thorough introduction, see Lutz & Ascher’s Learn-

ing Python (O’Reilly 2004), or www.python.org.

5

Basics

Python may be run either interactively (command prompt)

or scripted (put commands in one or more files).

kerl@gila:pyaa% python

Python 2.2.2 (#1, Feb 24 2003, 19:13:11)

[GCC 3.2.2 20030222 (Red Hat Linux 3.2.2-4)] on linux2

Type "help", "copyright", "credits" or "license" for

more information.

>>> 1+2

3

6

Script example: have a file factorial.py.

def fact(n): # Here is how you write a comment in Python.

if (n < 0):

return 0

elif (n <= 1):

return 1

else:

return n * fact(n-1)

Then:

kerl@gila:pyaa% python -i factorial.py

>>> fact(10)

3628800

>>>

7

Main points about python

• Variables don’t need to be declared before use.

• Control structures, e.g. if-statements, while-loops,
for-loops, etc are indicated purely by indentation,
rather than by curly braces or end-statements as in
most other languages.

• Due largely to these two facts, Python reads like
pseudocode: Python programs often do just what
they look like they do, with little syntactical over-
head.

There are four language features which make Python
ideal for abstract algebra: lists, operator overloading,
run-time binding, and modules.

8

Lists

Python has a flexible list type with the following fea-
tures:

• Indexed, e.g. they can be treated as arrays (note:
zero-based).

• Nested, e.g. they can be used for matrices, or
higher-dimensional arrays. Useful for representing
cosets, direct products, etc.

• Heterogeneous, e.g. the first element of a list
can be a number, the second a string, the third a
sublist, etc. Ee.g. matrices: each list element is
an array, all of the same length; list of conjugacy
classes: not all the same length.

9

Zero-based indexing and bounds checking:

>>> mylist=[1,2,3]

>>> mylist[0]

1

>>> mylist[1]

2

>>> mylist[2]

3

>>> mylist[3]

Traceback (most recent call last):

File "<stdin>", line 1, in ?

IndexError: list index out of range

10

List heterogeneity:

>>> mylist=["hello", 3, [2,3,4]]

>>>

>>> mylist[0]

’hello’

>>> mylist[1]

3

>>> mylist[2]

[2, 3, 4]

11

Iteration:

Often we want to loop over the elements of a list:

>>> mylist=[0,2,4,6]

>>> for element in mylist:

... print element

0

2

4

6

>>> for i in range(0, 4):

... print i**2,

...

0 1 4 9

12

Operator overloading

Example: modular addition (representation of cyclic

group on n elements.)

We want to be able to use this in the following way:

a = modadd_t(5, 11)

b = modadd_t(8, 11)

c = a * b

print c

13

Implementation:

class modadd_t:

def __init__(self, residue, modulus):

self.residue = residue % modulus

self.modulus = modulus

Use "*" for addition. Seems weird, but groups

are abstracted multiplicatively in SACK.

def __mul__(a,b):

if (a.modulus != b.modulus):

print "Mixed moduli %d, %d" % (a, b)

sys.exit(1)

c = modadd_t(a.residue + b.residue, a.modulus)

return c

...

14

Run-time binding

Above we saw a modadd t data type. Suppose there are
others, e.g. dih t for elements of the dihedral group
Dn, etc.

a = modadd_t(2, 5); d=modadd_t(3, 5)

b = dih_t(2, 0, 8); e=dih_t(3, 1, 8)

c = pmt_t([0 3 1 2], 4); f=pm_t([3 2 0 1], 4)

X = [a,b,c]; Y = [d,e,f]

Z = [X[0]*Y[0], X[1]*Y[1], X[2]*Y[2]]

More generally, we can make functions which operate
on lists of objects, and the functions we write don’t
need to know anything ahead of time about the data
types of those objects. As long as the objects can be
multiplied using the * operator, our code will work just
fine. This is the essence of abstraction.

15

Modules

See the paper for info; not presented in the slides.

16

Concrete groups

We already saw modadd t. Here we’ll look at dih t.

Dihedral groups (symmetries of plane n-gons) could

have been implemented as subgroups of Sn. In fact, all

these small finite groups could be done this way. The

point is that by implementing specific data types, we

obtain more user-friendly input-output representations.

There are two levels of software needed for each group:

(1) routines to deal with individual group elements, and

(2) routines to construct a list of all the elements of a

group.

17

Dihedral groups

The dihedral group Dn is here taken to be the symmetry
group on a plane n-gon. It has order 2n and is given
by the following presentation:

Dn = 〈ρ, φ | ρn = φ2 = 1, φρ = ρn−1φ〉.

From the presentation, the element ρ (rho for rotate)
has order n; the element φ (phi for flip) has order 2.
Furthermore, repeated use of the final relation enables
any element of Dn to be put into the form ρiφj for
i = 0,1,2, . . . , n − 1 and j = 0,1. Thus, given two
elements ρiφj and ρkφ` of Dn, we obtain the product

j = 0 : ρiρkφ` = ρi+kφ`

j = 1 : ρiφρkφ` = ρi−kφ`+1

18

As with the cyclic group, the modulus n is carried

around in each element of the group. The group oper-

ation may be implemented as follows.

As with the modular-addition data type, we reduce the

exponent of ρ mod n at construction time, and likewise

we reduce the exponent of φ mod 2, to obtain unique

representatives. This permits the eq and ne meth-

ods to do exact comparisons.

class dih_t:

def __init__(self, argrot, argflip, argn):

self.n = argn

self.rot = argrot % self.n

self.flip = argflip & 1

19

def __eq__(a,b):

return ((a.rot == b.rot) and (a.flip == b.flip))

def __ne__(a,b):

return not (a == b)

def __mul__(a,b):

if (a.n != b.n):

raise RuntimeError

if (a.flip):

crot = a.rot - b.rot

else:

crot = a.rot + b.rot

c = dih_t(crot, a.flip ^ b.flip, a.n)

return c

...

20

Fill routines

Loop over exponents on ρ, namely 0 to n− 1, and flip

exponents 0 to 1:

def get_elements(params_string):

n = dih_tm.params_from_string(params_string)

elts = []

for i in range(0, n):

for j in range(0, 2):

elt = dih_tm.dih_t(i, j, n)

elts.append(elt)

return elts

21

Algorithms for abstract groups

Now that we can do arithmetic on group elements, and

now that we can obtain groups, we can do abstract

computations on various concrete groups. Thanks to

Python’s heterogeneous lists, operator overloading, and

run-time binding, we can write some very straightfor-

ward code to do this.

22

Data structures

Groups are represented simply as lists of elements.

23

Set routines

A few self-explanatory set-related routines:

def element_of(x, S):

for a in S:

if (a == x):

return 1

return 0

def subset_of(T, S):

for t in T:

if (not element_of(t, S)):

return 0

return 1

def set_append_unique(S, x):

if (not element_of(x, S)):

S.append(x)

24

Group axioms

It is easy to check whether an array of elements is in

fact a group:

def is_group(G):

if (not is_closed(G)):

return 0

if (not is_associative(G)):

return 0

if (not has_unique_id(G)):

return 0

if (not has_inverses(G)):

return 0

return 1

25

Here is the associativity-checking routine; the others

are similar. As well, the is-abelian routine follows the

same pattern.

def is_associative(G):

for a in G:

for b in G:

ab = a * b

for c in G:

bc = b * c

ab_c = ab * c

a_bc = a * bc

if (ab_c != a_bc):

return 0

return 1

26

Orders

Order of a group: len(G). Order of an element:

def get_order(x):

xp = x * x

k = 2

while (1):

if (xp == x):

return k-1

xp = xp * x

k = k + 1

return 0

27

There is a trick here: We could require that the group’s

identity e be passed in as a separate argument, then

find the minimal positive exponent j such that xj = e.

Instead, we can find the minimal positive exponent k

such that xk = x, then return k − 1.

This routine permits another pair of concepts to be

implemented easily:

• Maximal element order: For each element x of the

group G, compute the element order of x. Take the

maximum of all these.

• Cyclicity: Compute the maximal element order. Test

it for equality against the group order.

28

Example:

kerl@gila:pyaa% sack s:6 order .

720

kerl@gila:pyaa% sack a:6 order .

360

29

Example:

kerl@gila:pyaa% sack a:4 orders .

0,1,2,3 1

0,2,3,1 3

0,3,1,2 3

1,0,3,2 2

1,2,0,3 3

1,3,2,0 3

2,0,1,3 3

2,1,3,0 3

2,3,0,1 2

3,0,2,1 3

3,1,0,2 3

3,2,1,0 2

30

Cayley table

Printing a Cayley table uses the fact that Python’s

print statement writes a carriage return unless its argu-

ments are followed by a comma. The key point here is

that due to run-time binding, Python invokes the str

method appropriate to each object in the list.

def print_cayley_table(G):

for a in G:

for b in G:

c = a*b

print c,

print

31

Example:

kerl@gila:pyaa% sack q8 caytbl .

1 -1 i -i j -j k -k

-1 1 -i i -j j -k k

i -i -1 1 k -k -j j

-i i 1 -1 -k k j -j

j -j -k k -1 1 i -i

-j j k -k 1 -1 -i i

k -k j -j -i i -1 1

-k k -j j i -i 1 -1

32

Cosets

A routine to compute left cosets:

def left_cosets(G, H):

oG = len(G)

oH = len(H)

iGH = oG / oH

... (error-checking here: does |H| divide |G|?)

GH = []

for g in G:

gHe = range(0, oH) # Make a list of length |H|

for j in range(0, oH):

gHe[j] = g * H[j]

gH = coset(gHe)

set_append_unique(GH, gH)

return GH

33

Direct products

A SACK tuple is just an object containing a list of

elements. Multiplication (overloaded multiplication op-

erator!) of two such objects is done elementwise.

class tuple:

def __init__(self, slots):

self.slots = copy.copy(slots)

def __mul__(a,b):

n = len(a.slots)

c = tuple(a.slots)

for i in range(0, n):

c.slots[i] = a.slots[i] * b.slots[i]

return c

34

Given that, it is straightforward to construct the direct

product of two given groups:

def direct_product(G1, G2):

n1 = len(G1)

n2 = len(G2)

n3 = n1 * n2

G3 = []

for i in range(0, n1):

for j in range(0, n2):

G3.append(tuple([G1[i], G2[j]]))

return G3

35

Nilpotency and solvability

The basic ingredient is the commutator:

[x, y] = xyx−1y−1.

def commutator(x, y):

return x * y * x.inv() * y.inv()

Closing a finite group, given generators: since our
groups are finite, we need only to compute closure with
respect to addition, not inversion. (In a finite group,
the inverse of any element is obtained by raising it to a
sufficiently high postiive exponent.) Idea: (1) Remem-
ber the size of the set. (2) Add all pairwise products to
the set, if they are not already there. (3) Repeat steps
1 and 2 until no more elements are added.

36

def close_group(G):

while (1):

n = len(G)

for i in range(0, n):

x = G[i]

for j in range(0, n):

y = G[j]

xy = x * y

yx = y * x

set_append_unique(G, xy)

set_append_unique(G, yx)

if (len(G) == n):

return

37

Usual characterization of nilpotency is via ascending
central series. Grove’s Algebra offers a more convenient
characterization of nilpotency: Define

[G,H] = 〈[g, h] : g ∈ G, h ∈ H〉.
Define

L1 = [G,G] and Lk+1 = [G,Lk], k > 1.

Then G is nilpotent iff Ln(G) = {1} for some n.

def nilbracket(G, Gi):

G2 = []

for a in G:

for b in Gi:

set_append_unique(G2, commutator(a, b))

close_group(G2)

return G2

38

Compute Lk for successively higher k, looping until
|Lk+1| = |Lk|; G is nilpotent iff that stable size is 1.

def is_nilpotent(G):

Gp = copy.copy(G)

while (1):

Gpp = nilbracket(G,Gp)

oGp = len(Gp)

oGpp = len(Gpp)

if (oGpp == 1):

return 1

if (oGp == oGpp):

return 0

Gp = Gpp

The routines for derived subgroup and solvability follow
the same pattern.

39

Examples:

kerl@gila:pyaa% sack d:3 solvable .

solvable

kerl@gila:pyaa% sack d:4 solvable .

solvable

kerl@gila:pyaa% sack d:2 nilpotent .

nilpotent

kerl@gila:pyaa% sack d:3 nilpotent .

non-nilpotent

kerl@gila:pyaa% sack d:4 nilpotent .

nilpotent

kerl@gila:pyaa% sack d:6 nilpotent .

non-nilpotent

kerl@gila:pyaa% sack d:16 nilpotent .

nilpotent

40

Further directions

The software sketched here involves groups written mul-

tiplicatively. However, in Python one may overload any

arithmetic operators, so there is no reason one cannot

write similar software to deal with rings, fields, linear

algebra, tensor products, and so on.

41

