Lattice doubling for three-dimensional quantum networks

John Kerl

May 5, 2008

Abstract

We extend a two-dimensional lattice-doubling result to three dimensions, in the context of percolation through quantum networks. This is a write-up for the final component of my independent-study course under Janek Wehr in the spring of 2008.

Contents

Contents 2
1 Review of the two-dimensional case 3
2 The three-dimensional case 3
2.1 Lattice doubling 3
2.2 Upper bounds 3
2.3 Monte Carlo estimation of connectivity functions 3
2.4 Curve fitting 3
3 Conclusion 3
References 4
Index 5

1 Review of the two-dimensional case

Our goal is to extend the results of section VI.C of PCALW] from two dimensions to three. We begin by summarizing the two-dimensional situation.
xxx
Let

$$
\pi=P\left[A \in C_{\infty} \cup A^{\prime} \in C_{\infty}\right]=P\left[B \in C_{\infty} \cup B^{\prime} \in C_{\infty}\right]
$$

We want an upper bound on π^{2}. xxx compare to other.
$\operatorname{xxx} \theta$.
Using the inclusion-exclusion principle, we have

$$
P\left[A \in C_{\infty} \cup A^{\prime} \in C_{\infty}\right]=P\left[A \in C_{\infty}\right]+P\left[A^{\prime} \in C_{\infty}\right]-P\left[A^{\prime} \in C_{\infty} \cap A^{\prime} \in C_{\infty}\right]
$$

The first two terms are both θ. Using the transitivity of the clustering relation we may rewrite the last term as well. One obtains

$$
P\left[A \in C_{\infty} \cup A^{\prime} \in C_{\infty}\right]=2 \theta-P\left[A \in C_{\infty} \cap A \circ-A^{\prime}\right]
$$

We now desire a lower bound on the last term. Using the FKG inequality [Gri] [xxx quack about increasing events],

$$
P\left[A \in C_{\infty} \cap A \circ \multimap A^{\prime}\right] \geq P\left[A \in C_{\infty}\right] P\left[A \circ \circ A^{\prime}\right]
$$

Now, $P\left[A \in C_{\infty}\right]$ is simply θ; write

$$
\tau=P\left[A \circ \circ A^{\prime}\right]
$$

Then

$$
P\left[A \in C_{\infty} \cap A \circ \multimap A^{\prime}\right] \geq \theta \tau
$$

For our upper bound on π we now have

$$
\pi \leq \theta(2-\tau)
$$

2 The three-dimensional case

2.1 Lattice doubling

xxx picture here

2.2 Upper bounds

2.3 Monte Carlo estimation of connectivity functions

2.4 Curve fitting

3 Conclusion

References

[Gri] Grimmett, G. Percolation (2nd ed.). Springer, 1999.
[Mer] Mermin, X. Lecture Notes on Quantum Computation.
http://people.ccmr.cornell.edu/~mermin/qcomp/CS483.html.
[NC] Nielsen, M.A. and Chuang, I.L. Quantum Computation and Quantum Information. Cambridge, 2001.
[PCALW] Perseguers, S., Cirac, I., Acín, A., Lewenstein, M., and Wehr, J.. Entanglement Distribution in Pure-State Quantum Networks. arxiv.org:0708.1025v2.

Index

