
The Metropolis-Hastings algorithm by example

John Kerl

December 21, 2012

Abstract

The following are notes from a talk given to the University of Arizona Department of Mathematics

Graduate Probability Seminar on February 14, 2008.

• Consider flipping a fair coin 100 times. The probability space has size 2100, which is on the order of
1069. Yet we can easily sample from this space: each event occurs with equal probability (1/2)100,
and all we have to do is conduct 100 independent Bernoulli experiments with p = 1/2.

• If the coin isn’t fair, not all events occur with equal probability. Yet it’s still easy to sample from
this space: we conduct 100 independent Bernoulli experiments with 0 ≤ p ≤ 1.

• Now suppose the coin flips aren’t independent — they have some peer pressure. This system is
called a one-dimensional Ising model and it’s non-trivial to sample from this space.

I will describe how the Metropolis-Hastings algorithm allows us to conduct experiments using such a
model.

This paper is under construction.
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1 Introduction

Coin flips are used as a motivating example to describe why one would want to use the Metropolis-Hastings
algorithm. The algorithm is presented, illustrated by example, and then proved correct. See [Kerl] for
probability terminology and notation used in this paper.

2 Probability distributions

Consider flipping n coins. Encode a heads-up flip as +1 and a tails-up flip as −1. Then the result of the ith
flip is ωi ∈ {+1,−1}. I’ll discuss four scenarios, with increasing levels of complexity. Write ordered n-tuples

ω = (ω1, . . . , ωn).

Notice that there are N = 2n outcomes in the probability space

Ω = {(ω1, . . . , ωn) : ωi = ±1}.

For example, with n = 3 coins, there are N = 8 outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH, and
TTT.

2.1 IID fair flips

In the first case I consider, the flips are independent and identically distributed. Furthermore, each coin is
fair, which is to say

Pi(+1) = 1/2 and Pi(−1) = 1/2.

Due to independence, the probabilities factor:

P (ω) = P (ω1, . . . , ωn)

= P1(ω1) · · ·Pn(ωn)

=
n
∏

i=1

1

2
=

(

1

2

)n

.

For example, with n = 3, the probability of heads, tails, heads is

P (+1,−1,+1) = 1/8.

The other 7 possible outcomes also occur with probability 1/8. Here’s the PMF:

(ω1, ω2, ω3) P (ω1, ω2, ω3)

( 1 1 1 ) 0.125
( 1 1 -1 ) 0.125
( 1 -1 1 ) 0.125
( 1 -1 -1 ) 0.125
( -1 1 1 ) 0.125
( -1 1 -1 ) 0.125
( -1 -1 1 ) 0.125
( -1 -1 -1 ) 0.125
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2.2 IID flips

In the second case I consider, the n flips are still IID but the coin isn’t necessarily fair. Each lands heads-up
with probability p, where 0 ≤ p ≤ 1. Due to independence, the probabilities still factor. Let

ηi =

{

0, ωi = +1

1, ωi = −1.
(2.1)

That is,

ωi = 1− 2ηi and ηi =
1− ωi

2
. (2.2)

Then

P (ω) = P (ω1, . . . , ωn)

= P1(ω1) · · ·Pn(ωn)

=

n
∏

i=1

p1−ηi(1 − p)ηi .

With n = 3, the probability of heads, tails, heads is

P (1,−1, 1) =
(

p1(1− p)0
) (

p0(1− p)1
) (

p1(1− p)0
)

= p2(1 − p).

The PMF is as follows, with p = 0.9:

(ω1, ω2, ω3) P (ω1, ω2, ω3)

( 1 1 1 ) 0.729
( 1 1 -1 ) 0.081
( 1 -1 1 ) 0.081
( 1 -1 -1 ) 0.009
( -1 1 1 ) 0.081
( -1 1 -1 ) 0.009
( -1 -1 1 ) 0.009
( -1 -1 -1 ) 0.001

2.3 Independent flips

In the third case I consider, the coin flips are still independent but they are not identically distributed: each
has its own probability pi of heads. That is,

Pi(ωi = +1) = pi.

Then
P (ω) = P (ω1, . . . , ωn)

= P1(ω1) · · ·Pn(ωn)

=
n
∏

i=1

p1−ηi

i (1 − pi)
ηi .

(2.3)
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With n = 3, the probability of heads, tails, heads is

P (1,−1, 1) = p1(1− p2)p3.

With p1 = 0.6, p2 = 0.7, and p3 = 0.8, the PMF looks like this:

(ω1, ω2, ω3) P (ω1, ω2, ω3)

( 1 1 1 ) 0.336
( 1 1 -1 ) 0.084
( 1 -1 1 ) 0.144
( 1 -1 -1 ) 0.036
( -1 1 1 ) 0.224
( -1 1 -1 ) 0.056
( -1 -1 1 ) 0.096
( -1 -1 -1 ) 0.024

2.4 Dependent flips

In the fourth and final case I consider, the coin flips are no longer independent — perhaps we are flipping
magnetized coins, where the result of a flip is influenced by one or more of its neighbors. The PMF is a
function with potentially 2n different input/output values. There are all sorts of PMFs one could write down
to define a probability model for dependent coin flips. For example:

(ω1, ω2, ω3) P (ω1, ω2, ω3)

( 1 1 1 ) 0.4
( 1 1 -1 ) 0.0
( 1 -1 1 ) 0.1
( 1 -1 -1 ) 0.1
( -1 1 1 ) 0.0
( -1 1 -1 ) 0.1
( -1 -1 1 ) 0.1
( -1 -1 -1 ) 0.2

However, it’s not clear what kind of physical situation could lead to such an ad-hoc PMF.

There is one particular family of models — the Ising family — which contains enough flexibility to describe
plenty of dependent-flip situations. Furthermore, the Ising family has some physical plausibility.
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3 The one-dimensional Ising model

I’ll refer to spins rather than flips: heads and tails will be replaced with spin-up and spin-down, respectively.
A sequence such as HHTH will now be + +−+, and I will call that a spin configuration.

In the one-dimensional Ising model, there are n spins and N = 2n possible states (spin configurations), and
the individual spins in a configuration are not necessarily independent.

Let ω = (ω1, . . . , ωn) as before. We define an energy function on the spins ωi by

E(ω) =
n
∑

i=1

n
∑

j=1

Sijωiωj +
n
∑

i=1

hiωi.

The Sij ’s are coupling coefficients which specify the dependence of one spin on another. The hi’s are the
magnetic field term, which breaks the symmetry.

We get a probability model using the statistical-mechanical notation that energy is the logarithm of probabil-

ity. The probability of each configuration ω is a Boltzmann distribution with inverse temperature β = 1/kT
(where k is Boltzmann’s constant):

P (ω) ∝ e−βE(ω). (3.1)

To normalize this, so that
∑

ω
P (ω) = 1, we divide by

Z =

N
∑

k=1

e−βE(ω(k))

where ω
(k) runs over all possible states. This denominator has a special name: it is called a partition

function. Thus,

P (ω(j)) =
e−βE(ω(j))

∑N
k=1 e

−βE(ω(k))
.

Some handy notation: Write the probability numerator as

P ∗(ω(j)) = e−βE(ω(j)). (3.2)

Then

P (ω(j)) =
P ∗(ω(j))

Z
. (3.3)

We will see (if I get to it) that the diagonal terms Sii do not affect spin probabilities. Here are some examples
of S matrices, with n = 3.

Non-interacting: Mean field: Aligning nearest-neighbor:

S =





0 0 0
0 0 0
0 0 0



 S =





0 1 1
1 0 1
1 1 0



 S =





0 1 0
0 0 1
0 0 0





Anti-aligning nearest-neighbor: Aligning nearest-neighbor Anti-aligning nearest-neighbor
with periodic boundary conditions: with periodic boundary conditions:

S =





0 −1 0
0 0 −1
0 0 0



 S =





0 1 0
0 0 1
1 0 0



 S =





0 −1 0
0 0 −1

−1 0 0




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Here are the PMFs for the first three of those, with h = 0:

(ω1, ω2, ω3) P (ω1, ω2, ω3) P (ω1, ω2, ω3) P (ω1, ω2, ω3)
Non-interacting Mean field Aligning nearest neighbor

( 1 1 1 ) 0.125 0.4994973 0.3879017
( 1 1 -1 ) 0.125 0.0001676 0.0524968
( 1 -1 1 ) 0.125 0.0001676 0.0071047
( 1 -1 -1 ) 0.125 0.0001676 0.0524968
( -1 1 1 ) 0.125 0.0001676 0.0524968
( -1 1 -1 ) 0.125 0.0001676 0.0071047
( -1 -1 1 ) 0.125 0.0001676 0.0524968
( -1 -1 -1 ) 0.125 0.4994973 0.3879017
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4 Independence and CDF sampling

In this section we discuss two sampling methods which are simpler than Metropolis-Hastings: independence
sampling, which works for the independent cases, and CDF sampling which works for all four examples of
section 2 but doesn’t scale well as n increases.

4.1 Sample proportions

Suppose we flip four fair coins. Getting all four heads, or all four tails, is no huge surprise — but getting two
heads and two tails is more likely. On the other hand, if we flip a thousand fair coins, all heads or all tails are
very unlikely and we expect about 500 heads in general. It is quite possible to quantify these expectations
precisely, in terms of sample mean and variance, using the binomial theorem as described in [Kerl]: IID fair
flips lend themselves to neat theoretical analysis. For purposes of this paper, though, the goal is to describe
experimental methods which are useful for probability models which are not theoretically neat. It is more
important to look at sample proportions, which allow us to tabulate our experimental results.

Suppose we conduct (in a manner which subsequent sections will make precise) M experiments of an n-coin
flip, using any of the four models of section 2, with outcomes

ω
(1), . . . ,ω(M).

Then, for j = 1, . . . , N = 2n, define Qi to be the fraction of ω’s which landed in state i. I also sometimes
write, for brevity,

P = (P1, . . . , PN ) and Q = (Q1, . . . , QN).

For example, if I flip N = 3 fair coins M = 10 times, I might get the following:

i ω
(i)

1 ( 1 1 1 )
2 ( -1 1 -1 )
3 ( -1 1 1 )
4 ( -1 1 -1 )
5 ( -1 -1 1 )
6 ( 1 -1 1 )
7 ( 1 -1 1 )
8 ( -1 -1 1 )
9 ( 1 -1 -1 )
10 ( 1 1 1 )

Then I can tabulate the sample proportions, which I can compare against the PMF:

ω P (ω) Q(ω)

( 1 1 1 ) 0.125 0.2
( 1 1 -1 ) 0.125 0.0
( 1 -1 1 ) 0.125 0.2
( 1 -1 -1 ) 0.125 0.1
( -1 1 1 ) 0.125 0.1
( -1 1 -1 ) 0.125 0.2
( -1 -1 1 ) 0.125 0.2
( -1 -1 -1 ) 0.125 0.0
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If I re-run this experiment with M = 10000 trials, I might get the following sample proportions:

ω P (ω) Q(ω)

( 1 1 1 ) 0.125 0.1247
( 1 1 -1 ) 0.125 0.1191
( 1 -1 1 ) 0.125 0.1250
( 1 -1 -1 ) 0.125 0.1281
( -1 1 1 ) 0.125 0.1237
( -1 1 -1 ) 0.125 0.1307
( -1 -1 1 ) 0.125 0.1231
( -1 -1 -1 ) 0.125 0.1256

The law of large numbers tells us that each of the eight Qi’s approach the respective Pi’s as the number
M of trials increases; the central limit theorem tells us about the distribution of the Qi’s.

The next question is how to actually conduct such an experiment in a computer program.

4.2 Sampling with the independence method

For independent flips, e.g. any of the first three models in section 2, it’s easy to produce samples. Recall that
pj is the probability that the jth flip is heads, which we encode as +1. Thus, the algorithm is straightforward.

Initialize the histogram bins:

For i = 1, . . . , N (number of possible outcomes):
countsi = 0.

Generate states and collect data:

For i = 1, . . . ,M (number of trials):
For j = 1, . . . , n (number of coins):

U = uniform random on [0, 1).
If U < pj then ωj = +1 else ωj = −1.

Find the index k of the state ω = (ω1, . . . , ωn) which was just generated.
Increment countsk by 1.

Scale the histogram bins down to sample proportions:

For i = 1, . . . , N (number of possible outcomes):
Divide countsi by M .

The output of such an experiment was shown in section 4.1.

The main limitation of this algorithm is obvious: it only works for independent-flip models.

4.3 Sampling with the CDF method

For all four models of section 2 — independent or not — it is possible to sample using a technique which is
almost as simple as the independence sampling of the previous section.
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The key concept is the cumulative distribution function. That is, we write down the N possible outcomes
in some order ω(1) through ω

(N), then tabulate at the jth slot the probability of obtaining states ω(1) through
ω

(j). That is, the CDF, as a function of j from 1 to N , is

C(j) = P ({ω(1), . . . ,ω(j)}).

E.g.

C(1) = P (ω(1)

C(2) = P (ω(1) + P (ω(2)

C(3) = P (ω(1) + P (ω(2) + P (ω(3)

...

C(N) = P (ω(1) + . . .+ P (ω(N).

For example, using the IID-fair model, we have

ω P (ω) CDF

( 1 1 1 ) 0.125 0.125
( 1 1 -1 ) 0.125 0.250
( 1 -1 1 ) 0.125 0.375
( 1 -1 -1 ) 0.125 0.500
( -1 1 1 ) 0.125 0.625
( -1 1 -1 ) 0.125 0.750
( -1 -1 1 ) 0.125 0.875
( -1 -1 -1 ) 0.125 1.000

Likewise, using the aligning nearest-neighbor Ising model from section 3, with h = 0.1, we have

ω P (ω) CDF

( 1 1 1 ) 0.3879017 0.3879017
( 1 1 -1 ) 0.0524968 0.4403985
( 1 -1 1 ) 0.0071047 0.4475032
( 1 -1 -1 ) 0.0524968 0.5000000
( -1 1 1 ) 0.0524968 0.5524968
( -1 1 -1 ) 0.0071047 0.5596015
( -1 -1 1 ) 0.0524968 0.6120983
( -1 -1 -1 ) 0.3879017 1.0000000

The algorithm is as follows.

Turn the PMF into a CDF:

Sum = 0.
For i = 1, . . . , N (number of possible states):

Sum := sum + pi.
CDFi = sum.

Initialize the histogram bins:

For i = 1, . . . , N (number of possible outcomes):
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countsi = 0.

Generate states and collect data:

For i = 1, . . . ,M (number of trials):
U = uniform random on [0, 1).
For j = 1, . . . , N :

If U < CDFj :
Increment countsj by 1; go the next iteration of the i loop.

Scale the histogram bins down to sample proportions:

For i = 1, . . . , N (number of possible outcomes):
Divide countsi by M .

Example results are as follows, with M = 10000 trials:

ω P (ω) Q(ω) Difference

( 1 1 1 ) 0.3879017 0.3832000 0.0047017
( 1 1 -1 ) 0.0524968 0.0480000 0.0044968
( 1 -1 1 ) 0.0071047 0.0070000 0.0001047
( 1 -1 -1 ) 0.0524968 0.0506000 0.0018968
( -1 1 1 ) 0.0524968 0.0557000 −0.0032032
( -1 1 -1 ) 0.0071047 0.0063000 0.0008047
( -1 -1 1 ) 0.0524968 0.0522000 0.0002968
( -1 -1 -1 ) 0.3879017 0.3970000 −0.0090983

The limitation of this CDF-sampling algorithm is a bit subtle: it requires computing probabilities for all N
states. In the coin-flip example, N = 2n. For, say, n = 100, 2n ≈ 1069 which is (as I recall) on the order of
the number of protons in the universe. One cannot even write down all possible states. Yet 100 coins isn’t
a lot so it seems like we should be able to do something.

There is even worse news. Computing the partition function Z requires a sum over all N states, which is
also infeasible. Not only can we not list the probability of all states, we can’t even compute the (normalized)
probability of even one state, since (from equations 3.2 and 3.3) P (ω) = P ∗(ω)/Z. It would be nice if
we had something which only depended on the probability numerator P ∗(ω) = e−βE(ω), which is easy to
compute.

We will see in the following sections that the Metropolis-Hastings algorithm overcomes both these problems.
First we will see what that algorithm is and what it does; then, we’ll see why it works.
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5 Sampling with Metropolis-Hastings

Here we present the essential components of the Metropolis-Hastings algorithm, in pseudocode and a worked
example. Important, non-negligible practical considerations are deferred until section 6; correctness is proved
in section 8.

5.1 The algorithm

The goal is to select M samples ω(1), . . . ,ω(M) from the PMF of the 1D Ising model with specified S, h, and
β. The states have probability numerator P ∗(ω) = exp(−βE(ω)) as given by equation 3.2. Here, I display
spins as up (filled) or down (hollow):

• There is an inverse temperature β: For physical systems, this has some meaning and, presumably,
would be varied under some controlled pattern. For the independent models, β cancels and has no
effect (as we’ll see in section 6.7) so you can give it any non-zero value, e.g. β = 1.

• Pick an initial configuration. Typically, there are three choices: (1) Start with all spins down, i.e.
ω = (−1, . . . ,−1). (2) Start with all spins up, i.e. ω = (+1, . . . ,+1). (3) Start with ω selected from a
uniform probability distribution on Ω. (See section 6.2 for more information on choice of initial state.)

• Select a site j and decide whether to flip ωj to −ωj. (See section 6.3 for more information on site
selection.)

P (change) = min{1, e−∆H}

• This decision is made using the Metropolis prescription, namely:

– Compute the change in energy ∆E = E(ω′) − E(ω) which would be obtained if ω were sent to
ω

′ by flipping ωj .

– One may compute ∆E by separately computing E(ω′) and E(ω) and subtracting the two. How-
ever, since the only change is at the site j, one may do some ad-hoc algebra (sections 6.7 and 6.8)
to derive an expression for ∆E which is less computationally expensive.

– Accept the change with probability
min{1, e−∆E}.

Otherwise, the change is said to be rejected.

This is called a Metropolis step.

• Looping through all n sites from j = 1 to j = n, performing a Metropolis step at each site j, is called
a Metropolis sweep.

• Doing M sweeps is a complete experiment. (See section 6.1 for more information on choice of M .)
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• If one realizes a random variable X(ω) at each of M sweeps, averaging X over the M sweeps, one
obtains an approximation X for the expectation E[X ]. (See section 5.5 for more information on choice
of random variable.)

The above may be rephrased in pseudocode as follows:

Pick the initial state ω:

For i = 1, . . . , n (number of spins):
ωi = 0 (spins-down)

OR
For i = 1, . . . , n (number of spins):

ωi = 1 (spins-up)
OR
For i = 1, . . . , n (number of spins):

ωi = ±1 with probabilities 1/2, 1/2 (uniform random initial state).

Generate states and collect data:

For i = 1, . . . ,M (number of trials):
One Metropolis sweep:

For j = 1, . . . , n (number of spins):
One Metropolis step:

∆E = E(ω′)− E(ω) where ω
′ has opposite spin at site j.

Let V = min{1, e−β∆E}.
Generate U uniformly distributed on [0, 1).
If U < V :

Accept the new state: ω := ω
′.

Else:
Reject the new state: keep ω.

Find the index k of the state ω = (ω1, . . . , ωn) which was just generated.
Increment countsk by 1. (Do this whether the new state was accepted or not.)

Scale the histogram bins down to sample proportions:

For k = 1, . . . , N (number of possible outcomes):
Divide countsk by M .

Notice that a step of this algorithm touches one of the n sites; a sweep touches all n sites. We collect data
only once per sweep, since only then have all sites been given a chance to change.

This is the basic algorithm. Important caveats, though, are presented in section 6.

5.2 Walk-through

Here are two sweeps with n = 3, β = 1, aligning nearest-neighbor model, initial state (1, 1, 1), and h = 0.1.
These are the energies and probability numerators:

14



State number ω E(ω) P ∗(ω)

1 ( 1 1 1 ) -1.7 5.4739474
2 ( 1 1 -1 ) 0.1 0.9048374
3 ( 1 -1 1 ) 2.1 0.1224564
4 ( 1 -1 -1 ) -0.1 1.1051709
5 ( -1 1 1 ) 0.1 0.9048374
6 ( -1 1 -1 ) 1.9 0.1495686
7 ( -1 -1 1 ) -0.1 1.1051709
8 ( -1 -1 -1 ) -2.3 9.9741825

Initial state: ( 1 1 1 )

Sweep 1:

omega j state# Delta E U V Accept/reject New E

------------ --- ------ ------- --------- --------- ------------- -----

( 1 1 1 ) 1 1 1.8 0.9731406 0.1652989 Reject -1.7

( 1 1 1 ) 2 1 3.8 0.3204335 0.0223708 Reject -1.7

( 1 1 -1 ) 3 2 1.8 0.1590330 0.1652989 Accept 0.1

State after sweep 1: ( 1 1 -1 )

Sweep 2:

omega j state# Delta E U V Accept/reject New E

------------ --- ------ ------- --------- --------- ------------- -----

( 1 1 -1 ) 1 2 1.8 0.6781967 0.1652989 Reject 0.1

( 1 -1 -1 ) 2 4 -0.2 0.9644570 1.0000000 Accept -0.1

( 1 -1 -1 ) 3 4 2.2 0.2357908 0.1108032 Reject -0.1

State after sweep 2: ( 1 -1 -1 )

5.3 Numerical results

Example results are as follows, n = 3, aligning nearest-neighbor model, h = 0.1, and M = 10000 trials:

ω P (ω) Q(ω) Difference

( 1 1 1 ) 0.3879017 0.3875000 0.0004017
( 1 1 -1 ) 0.0524968 0.0514000 0.0010968
( 1 -1 1 ) 0.0071047 0.0066000 0.0005047
( 1 -1 -1 ) 0.0524968 0.0523000 0.0001968
( -1 1 1 ) 0.0524968 0.0530000 −0.0005032
( -1 1 -1 ) 0.0071047 0.0070000 0.0001047
( -1 -1 1 ) 0.0524968 0.0523000 0.0001968
( -1 -1 -1 ) 0.3879017 0.3899000 −0.0019983

5.4 Heuristics

Recall from section 5.1 that the Metropolis transition probability is

min{1.0, exp(−β∆E)}.
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So, the Metropolis algorithm certainly transitions to states with non-negative exp(−β∆E), and randomly
transitions to states with negative exp(−β∆E). The certain transition occurs when

exp(−β∆E) ≥ 1

−β∆E ≥ log(1) = 0

β∆E ≤ 0

∆E ≤ 0.

Thus, we may also say that the Metropolis algorithm certainly transitions to lower-energy or same-energy
states, and randomly transitions to higher-energy states.

Certain transition exp(−β∆E) ≥ 1 ∆E ≤ 0

Random transition exp(−β∆E) < 1 ∆E > 0

5.5 Random variables for 1D Ising

Here, the RVs are counts Qi as described in section 4.1. This is just for didactic purposes. Often people
look at sample means (averages) of some quantity, taken at each sample. One can also define energy, total
magnetization, correlations between specified pairs of sites, etc.

16



6 Design choices and caveats for Metropolis-Hastings

For clarity, I presented the basic algorithm in section 5.1. Here are additional practical considerations which
must be addressed in any serious use of Metropolis-Hastings. Correctness of the algorithm is proved in
section 8.

6.1 Number of trials

Choice of the number of iterations M : How to do this wisely is a story in itself. For this paper, I suggest
trying a few runs with each M , for varying M ’s. For example, do half a dozen runs with M = 10000, another
half-dozen runs with M = 20000, etc. Then choose an M which reduces the standard deviation of the sample
mean to your desired number of decimal places.

6.2 Initial state

Choice of the initial state is as described in section 5.1: typically lowest-energy/highest-energy (e.g. here
the all-down/all-up states), or random configuration. Results should be independent of initial state. Failure
to achieve this may be due to inadequate thermalization (section 6.4).

6.3 Sequential vs. random sweeps

The decision here is whether to sweep through all sites from (say) left to right, or to move through them
randomly. There is some debate in the literature on this topic (for which I lack citations here).

6.4 Thermalization

One should first run L Metropolis sweeps of the system, discarding any data collected, before running the
M sweeps in which data are accumulated. The L sweeps are called the thermalization phase; the M sweeps
are called the accumulation phase.

xxx clarify with numerical/graphical examples (describe in terms of P plots in section xxx): The underlying
concern is the convergence of the Metropolis probability distribution to the stable distribution of its implicit
Markov chain.

Put up E plots?

According to Tom Kennedy, there is no general method to determine whether the system has thermalized.
xxx discuss E-plot idea (if it works out ...); manual approaches.

6.5 Separation of states

xxx highly annp — the distribution is supported on all-spins-up and all-spins-down. The Metro one-at-a-time
method will always give rejects. Generalize, and cite some further reading.
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6.6 Downsampling to avoid correlation

Downsampling and batched means are discussed thoroughly in appendix B of [Kerl2010]. The discussion
there also includes information about Berg’s autocorrelation detection.

6.7 ∆E computations for the independent model

As noted in section 5.1, it is usually possible to compute ∆E at less computational cost than E(ω′)−E(ω).
That is, computing E(ω) requires visiting all n sites of a spin configuration, as does computing E(ω′), but
since the Metropolis algorithm only modifies one spin, we can skip most of the redundant values which will
only cancel out anyway.

When you use a Metropolis-Hastings on a new problem, you will likely be doing some calculations of the
type shown here.

xxx note β shouldn’t affect probabilities — it shouldn’t matter whether we’re flipping hot coins or cold ones.
then do the algebra and show why this intuition is right.

xxx independence from temperature.

Using equations 3.1 and 2.3,

P (ω) ∝ e−βE(ω)

xxx

E(ω) = − 1

β
log(P (ω))

= − 1

β
log

(

n
∏

i=1

p1−ηi

i (1− pi)
ηi

)

= − 1

β

n
∑

i=1

((1 − ηi) log(pi) + ηi log(1− pi)) .

xxx flip only at jth slot: ω′
j = −ωj and so η′j = 1− ηj :

∆E = − 1

β
(ηj log(pj) + (1− ηj) log(1− pj)− (1− ηj) log(pj)− ηj log(1 − pj))

= − 1

β
((1− 2ηj) log(1− pj)− (1− 2ηj) log(pj))

= − 1

β
(1− 2ηj) log

(

1− pj
pj

)

=
ωj

β
log

(

pj
1− pj

)

.

xxx (or perhaps just state that the β’s cancel):

exp (−β∆E) = exp

(

−ωj log

(

pj
1− pj

))

=

(

1− pj
pj

)ωj

.

xxx certain-transition case is
(

1− pj
pj

)ωj

≥ 1.
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Thus, when ωj = 1, there is a certain transition when pj ≤ 1/2; when ωj = 1, there is a certain transition
when pj ≥ 1/2. Since p was P (ωj = 1) — the probability of heads at the jth slot — the Metropolis
algorithm certainly sends individual spins to their more likely states, and randomly sends them to their less
likely states.

6.8 ∆E computations for the 1D Ising model

As discussed at the beginning of the previous section, and as mentioned in section 5.1, we can compute ∆E
at less computational cost than E(ω′)− E(ω).

The current state is ω and the energy is

E = −
∑

ij

Sijωiωj +
∑

i

hiωi.

The candidate new state ω
′ has opposite spin ωk. For example, with n = 4, k = 2, and

ω = (+1,+1,+1,+1),

we have (numbering states from 0 up to n− 1):

ω
′ = (+1,+1,−1,+1).

Then the new energy is

E′ = −
∑

ij

Sijω
′
iω

′
j +

∑

i

hiω
′
i

and the energy change is

∆E = E′ − E

= −
∑

ij

Sijω
′
iω

′
j +

∑

ij

Sijωiωj +
∑

i

hi(ω
′
i − ωi).

Now, in my computer program I’m going to be computing this energy difference very many times, so I want
to omit as much redundant computation as possible. For i 6= k we have ω′

i = ωi, and for i = k we have
ω′
k = −ωk. So the last term is

hk(ω
′
k − ωk) = −2hkωk.

The sums split into four pieces: (1) i 6= k and j 6= k, (2) i = k and j 6= k, (3) i 6= k and j = k, and (4) i = k
and j = k.

The first piece is

−
∑

i,j 6=k

Sijω
′
iω

′
j +

∑

i,j 6=k

Sijωiωj = −
∑

i,j 6=k

Sijωiωj +
∑

i,j 6=k

Sijωiωj = 0.

The second piece is

−
∑

j 6=k

Skjω
′
kω

′
j +

∑

j 6=k

Skjωkωj =
∑

j 6=k

Skjωkωj +
∑

j 6=k

Skjωkωj = 2
∑

j 6=k

Skjωkωj.

The third piece is

−
∑

i6=k

Sikω
′
iω

′
k +

∑

i6=k

Sikωiωk = 2
∑

i6=k

Sikωiωk.
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The fourth piece is
−Skkω

′
kω

′
k + Skkωkωk = −Skkωkωk + Skkωkωk = 0.

Thus the energy difference is

2





∑

j 6=k

Skjωkωj +
∑

i6=k

Sikωiωk − hkωk



 .
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7 Markov chains

In order to prove the correctness of Metropolis-Hastings, we first need to understand Markov chains. We get
Markov chains by putting together two concepts: stochastic processes and conditional probability. I
preface discussion of Markov chains with the die-tipping example which helps motivate the discussion.

Throughout, I assume elementary probability terminology as in [Kerl, Lawler, GS]. Namely: sample space;
probability measure; probability mass function (PMF); probability density function (PDF); random variable.

7.1 The die-tipping experiments

Most of this document uses coin-flipping and the 1D Ising model as a running example. Here, though, I
describe two even simpler experiments (experiment A and experiment B), which involve tipping a single die.
As simple as these are, they encapsulate all the central points I want to make about Markov chains. I’ll
return to coin flips and the Ising model in section xxx.

First recall that the pips on opposite faces of a die add to 7:

Experiment A: I set the die on the table with the one-face up. Then I close my eyes momentarily and tip
it, so the one-face is now on the side. I then close my eyes and tip it again, and so on, until I’ve tipped it 20
times.

If I repeat this experiment — placing the side and doing the 20 tips — many times, what’s the probability
distribution for the initial state, before tipping? I always start with 1 on top, so we have

P(0) = (1, 0, 0, 0, 0, 0).

(The six-tuple notation is the probability of 1-face up, 2-face up, and so on. The superscript on the P

indicates how many tips have occurred.)

What are the possibilities for the new top face after the first tip? The 1-face was tipped over, and the 6-face
was on the bottom so it can’t be on top. But 2, 3, 4, and 5 are equally likely. So the probability distribution
is

P(1) =

(

0,
1

4
,
1

4
,
1

4
,
1

4
, 0

)

.

Note in particular that the up-face after each tip is not independent of the up-face before that tip: given

that the current up-face is, say, 3, there are transition probabilities for what the next up-face will be.

What about P(2), P(3), and so on? It’s an elementary, but somewhat tedious, exercise in cases to show that

P(2) =

(

1

4
,
1

8
,
1

8
,
1

8
,
1

8
,
1

4

)

.

One can continue this pattern, but one of my goals is to make an advertisement for the computational
advantages of Markov matrices. We’ll find out in section 7.5 how to easily compute P(k).
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Even before computing that, though, I certainly expect that after many tips, the die won’t remember that
the starting position was with the 1-face up. So, P(k) ought to begin to look uniform.

Experiment B: The only difference here is that instead of starting with the 1-face up, I instead first roll
the die. Then the initial distribution is

P(0) =

(

1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)

.

Again, you can go through the cases and find that

P(1) =

(

1

6
,
1

6
,
1

6
,
1

6
,
1

6
,
1

6

)

.

and so on. Again, Markov matrices in section 7.5 will make this easier.

In experiment A, the probability distribution started out supported only on 1-up but (we expect) begins to
approach uniform; in experiment B, the probability distribution is already uniform and stays that way.

Key points:

• We have a choice of initial state for the die-tipping experiment: for example, one-up, or roll first, or
others we could have used.

• We have a probability distribution P(0) for the initial state.

• We have probability distributions P(k) for the subsequent states. These distributions evolve in k.

• We have transition probabilities constraining which face can appear on each step of the experiment.
These connect the probability distributions P(k) and P(k+1). In section 7.5 we will describe the
evolution and the transition probabilities in terms of Markov chains.

• Some distributions evolve, or converge, toward a limiting distribution; this is called mixing or
thermalization. The limiting distribution (here, uniform) doesn’t evolve. This limiting distribution
is called a stationary distribution for the experiment.

• For this experiment, it looks various distributions evolve toward the uniform distribution. We’ll see in
section xxx how, and when, this happens.

7.2 Stochastic processes

Definition 7.1. Given a probability space Ω and a sequence P (k) of probability measures for k = 0, 1, 2, . . .,
a discrete-time stochastic process is a sequence of random variables1 X(k) from Ω to a state space S.

For concreteness, think of Ω as all N = 2n heads/tails configuration of n coin flips, or all N = 6 results of
the landing of a single die, where we allow the probability distributions P (k) to vary in time.

The state space might be another copy of Ω, or R, etc. For example, X(k) : Ω → R might count the number
of heads in a set of n coin flips. Or, W (k) : Ω → Ω might be the identity function.

(I should point out that many, if not most, authors define a stochastic process with one “long Ω”, e.g. the
probablity space is all sequences of n-coin-flip experiments.)

We categorize stochastic processes by their inputs and outputs:

1For the measure-theoretically inclined reader, X(k) is a measurable function from (Ω,F , P (k)) to (S,G) where F and G are
sigma algebras on Ω and S, respectively.
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• If k = 0, 1, 2, . . ., as above, then we have a discrete-time stochastic process, consisting of countably
many random variables X(k). If k ∈ [0,+∞), then we have a continuous-time stochastic process,
consisting of uncountably many random variables X(k).

• If each X(k) has only finitely or countably infinitely many possible output values, then we have a
discrete-valued stochastic process, and the distribution of X(k) is a PMF. If each X(k) is a contin-
uous random variable, then we have a continuous-valued stochastic process, and the distribution
of X(k) is a PDF.

For this paper, I am considering discrete-time, discrete-valued stochastic processes; Brownian motion is an
example of a continuous-time, continuous-valued stochastic process.

7.3 Conditional probability

Forgetting for just a moment about stochastic process, consider two discrete random variables X and Y with
joint PMF

fX,Y (x, y) = P (X = x, Y = y).

We can sum over x’s or y’s to obtain the marginal distributions of X and Y :

P (X = xi) =
∑

j

P (Y = yj, X = xi) and P (Y = yj) =
∑

i

P (Y = yj, X = xi).

Recall the definition of conditional probability:

P (Y = yj) =
P (Y = yj , X = xi)

P (X = xi)
(if P (X = xi) 6= 0, otherwise 0).

Multiply both sides by the denominator and sum over i:

P (Y = yj, X = xi) = P (Y = yj | X = xi)P (X = xi).

Then we have

P (Y = yj) =
∑

i

P (Y = yj | X = xi)P (X = xi). (7.1)

For example, take X to be the starting up-face of the die in experiment A or B of section 7.1, and take Y
to be the up-face after the first tip. Then the intuition is that equation 7.1 is the following. How likely is
it that Y will be in state j? Add up all the likelihoods of all previous states i, weighted by the probability
that state i transitions to state j.

In fact, if X and Y take finitely many values, say n each, we can write down an even nicer equation. Take
n = 2 for example. Then equation 7.1, for j = 1, 2 simultaneously, is just a matrix product:

(P (Y = y1), P (Y = y2)) = (P (X = x1), P (X = x2))

(

P (Y = y1 | X = x1) P (Y = y1 | X = x1)
P (Y = y1 | X = x1) P (Y = y1 | X = x1)

)

For shorthand, write

Pi = P (X = xi), P ′
j = P (Y = yj), and Mij = P (Y = yj | X = xi).
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Then equation 7.1 is

P ′
j =

n
∑

i=1

PiMij . (7.2)

or, more compactly,
P′ = PM. (7.3)

This matrix M of transition probabilities is called a stochastic matrix, which means the following.

Definition 7.2. A stochastic matrix has all entries between 0 and 1, and all row sums equal to 1.

The reason we choose the row-sum condition is that, given X = xi, it is certain that Y has to go to some yj :

n
∑

j=1

Mij =

n
∑

j=1

P (Y = yj | X = xi) = 1.

7.4 Markov chains

Remember that a (discrete-time) stochastic process is just a sequence of random variables on the same
probability space Ω. Those random variables can be related or unrelated. We are particularly interested in
the case when the (k + 1)st random variable depends only on the previous one.

Definition 7.3. A Markov chain is a stochastic process X(k) such that

P (Xn+1 = x | Xn = xn, . . . , X1 = x1) = P (Xn+1 = x | Xn = xn).

The intuition is that a Markov process has (at most) only one level of memory. The die-tipping example of
section 7.1 is a Markov process. If the up-face at the 19th step is a 2, then the up-face at the 20th step can
be 1, 3, 4, or 6. But it doesn’t matter at all how the 19th face got to be a 2.

(I said “at most” since a sequence of independent random variables is also a Markov process: for example,
replace the die-tipping experiment with a die-rolling experiment.)

(An example of a non-Markov process is a modified die-tipping experiment wherein I tip to a new face that
avoids the previous one. E.g. if the 10th face is a 3 and the 9th face was a 2, I would choose the 11th face
with equal likelihood from 1, 2, and 6.)

To apply conditional probability to Markov processes, simply replace X and Y of the previous section with
sequence of W (k) which are identity functions from Ω → Ω. The W (k) is simply the random variable which
is the state (of the coin flips, die-tips, etc.) at the kth time step. Also replace the P’s of the previous section
with a sequence of P(k)’s. Then we have probablity measures

P (k+1)({ω(j)}) and P (k)({ω(i)}).

on the sample space Ω, we have transition probabilities

M
(k,k+1)
ij = P (Wk+1 = ω(j) | W (k) = ω(i)),

and the PMFs at each successive time step are related by matrix multiplication: just as in equation 7.3:

P
(k+1)
j =

∑

i

P
(k)
i M

(k,k+1)
ij
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i.e.
P(k+1) = P(k)M (k,k+1). (7.4)

If additionally (as is the case in this paper) the transition probabilities are the same for each k, then we have
a time-homogeneous Markov chain. Then the successive PMFs are related by

P(k+1) = P(k)M (7.5)

and so
Pk = P(0)Mk. (7.6)

Thus, it will be interesting below [xxx] to see what happens to powers Mk of the Markov matrix M .

For our purposes, think of a Markov chain as a fixed matrix M along with with the sequence P(k) of PMFs,
remembering that there’s only the choice of P(0) after which point subsequent PMFs are obtained by matrix
multiplication.

When implementing such things in software (the electronics don’t have the error-correcting intuition your
brain does), it’s especially important to get the i’s and j’s straight:

• Mij = P (Wk+1 = ω(j) | W (k) = ω(i)).

• Mij = P (ω(i) 7→ ω(j)).

• When looking for the transition probability from state i to state j, look in row i and column j of M .

7.5 Die-tipping revisited

Now that we know about the evolution of PMFs using Markov matrices, it’s much easier to compute the
PMFs for the die-tipping experiments, as promised in section 7.1. In both experiments, the transition
probabilities are

M =

















0 1
4

1
4

1
4

1
4 0

1
4 0 1

4
1
4 0 1

4
1
4

1
4 0 0 1

4
1
4

1
4

1
4 0 0 1

4
1
4

1
4 0 1

4
1
4 0 1

4
0 1

4
1
4

1
4

1
4 0

















E.g. if the 1-face is up, afte the die-tip the up-face can’t be 1 or 6 but it can be any of the other four with
equal likelihood.

In experiment A, the initial PMF was
P(0) = (1, 0, 0, 0, 0, 0).
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Then we can just turn the crank and compute

k P(k)

0 1.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000
1 0.0000000 0.2500000 0.2500000 0.2500000 0.2500000 0.0000000
2 0.2500000 0.1250000 0.1250000 0.1250000 0.1250000 0.2500000
3 0.1250000 0.1875000 0.1875000 0.1875000 0.1875000 0.1250000
4 0.1875000 0.1562500 0.1562500 0.1562500 0.1562500 0.1875000
5 0.1562500 0.1718750 0.1718750 0.1718750 0.1718750 0.1562500
6 0.1718750 0.1640625 0.1640625 0.1640625 0.1640625 0.1718750
7 0.1640625 0.1679688 0.1679688 0.1679688 0.1679688 0.1640625
...

...
...

...
...

...
...

19 0.1666660 0.1666670 0.1666670 0.1666670 0.1666670 0.1666660
20 0.1666670 0.1666665 0.1666665 0.1666665 0.1666665 0.1666670

xxx comment, and plots.

Likewise, for experiment B,

k P(k)

0 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
1 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
2 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667
...

...
...

...
...

...
...

xxx compute higher powers of M .

7.6 Markov-chain properties

These are discussed thoroughly in chapter 4 of [Kerl2010]:

• irreducibility

• aperiodicity

• ergodicity

• reversibility

• stationarity

Numerical examples from handwritten notes.

xxx plot them with and without transposing — informative!

xxx note that this is ideal for detecting thermalization, but for large N , writing down the entire PMF is
precisely what we cannot do. Hence the art of thermalization detection.
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8 Markov chain Monte Carlo

8.1 Metropolis choice of Markov matrix

Given P , find M . Various possibilities; “good” convergence rate.

Def the particular M .

Prove it satisfies DB by construction.

Prove irr.

Prove aper. Not true for uniform P0! Need something else there . . . .

Note high correlation of X(k)’s.

8.2 Sampling theory

Thm: Sample mean over chain converges to true mean, when M is finite, irr, and aper.

Prove this.

c/
√
n convergence rate.
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9 Generalizations

xxx to do. Citations.

9.1 2D Ising

9.2 Non-example: percolation

9.3 Numerical integration

xxx continuous here . . . .

xxx emph large number of variables; Riemann mesh impossible.
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