Notes for Lie groups

John Kerl

February 3, 2008

Abstract

This is a crib sheet for Lie groups. It is under construction.

Contents

Co	Contents	
1	Introduction	3
2	Lie groups	3
3	Lie algebras	4
4	Lie groups and their algebras	4
5	Haar measure	4
6	Killing form	4
7	The Cartan subalgebra	5
8	Roots and root spaces	5
9	Clifford algebras?	5
10	Complexification of Lie algebras	5
Re	References	
In	Index	

1 Introduction

The art of doing mathematics consists in finding that special case which contains all the germs of generality.

— David Hilbert (1862-1943).

Focus:

- Exemplar model
- Connections with vector calc whenever possible.
- Motivation and otherwise-unsolvable problems: why do we need Lie groups?

To do:

- As much diffeo magic as possible
- Go thru all Palmer's HW assignments.

2 Lie groups

Definition 2.1. A Lie group is a smooth manifold G with an operation on points which make it a group. Furthermore, group multiplication and inversion must be smooth maps from $G \times G \to G$ and $G \to G$, respectively.

Example 2.2. \mathbb{R}^n with addition.

Std. examples: \mathbb{R}^n , projective spaces, spheres; finite groups w/ discrete topo?; GL, SU, SO, U, O, Sp(n), Spin(n).

Esp. n = 1 cases.

L and R maps.

Left-invariance.

Left-invt vr. flds.

Lie bracket.

abstract def'n of Lie alg. Mention cross products. Show that these algebras satisfy the definition.

 Ad

diffeos. L_g and R_g .

integral curve.

1-parm sgr. $f : \mathbb{R} \to G$.

Exemplars: \mathbb{R}^2 , \mathbb{R}^3 , S^3 , S^1 , $SL(2,\mathbb{R})$.

3 Lie algebras

axiomatic def'n. emph. *not* an algebra (non-associative). Doesn't need to come from a Lie group. Example: \mathbb{R}^3 with cross product.

Lie algebras: two ways. (1) left-invt vr. fields; (2) tangent space at identity.

Lie algebras for std. examples. Make sure to explain WHY.

Esp. O(n), SO(n), SU(n), Spin(n).

bracket; mx [A, B] = AB - BA.

bij'n LG and T_eG p. 129.

4 Lie groups and their algebras

 $G \to LG; g \to \ell g.$ exp; mx exp is e^A ; exp vs. Φ . $F: G_1 \to G_2; F_*: g_1 \to g_2.$ capitalization conventions. Ad, ad, rep spaces. d/dt p. 130. SO, O, SU, Sp; their L's. And dimensions. p. 153 double cover. $(L_g)_*$ and $(R_g)_*$ for mx groups.

5 Haar measure

6 Killing form

p. 172

- 7 The Cartan subalgebra
- 8 Roots and root spaces
- 9 Clifford algebras?
- 10 Complexification of Lie algebras

References

- [Fra] Frankel, T. The Geometry of Physics: An Introduction (2nd ed). Cambridge University Press, 2004.
- [Hall] Hall, B. Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer, 2003.
- [Lee2] J. Lee. Introduction to Smooth Manifolds. Springer, 2003.
- [Simon] B. Simon Representations of Finite and Compact Groups. American Mathematical Society, 1996.

Index

L	
Lie group	3
0.01	-
S	
	~
smooth manifold	3