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Abstract

Riemann sums and counting measure are used to motivate an intuitive derivation of the discrete
Fourier transform. Poisson summation is then used to obtain an error estimate for the DFT with respect
to the continuous Fourier transform on the circle. This paper fulfills a term-paper requirement for Bill
Faris’ spring 2006 Real Analysis course (Math 523B).



Contents

Contents 2

1 Fourier transforms and Fourier series 3

2 The discrete Fourier transform via Riemann sums 3

3 Poisson summation on the real line 4

4 Poisson summation on the circle 6

5 The Poisson summation formula for the DFT 8

6 First-order error analysis 8

7 Higher-order error analysis 10

References 12

2



1 Fourier transforms and Fourier series

Faris [Far] points out that the general context of Fourier analysis is an abelian group and its dual group.
(The duality is in the Pontryagin sense, the details of which are beyond the scope of this paper.) The
elements of the group are typically thought of as time or space variables; the elements of the dual group are
thought of as angular-frequency or wave-number variables. The following may be shown to be dual pairs of
abelian groups:

(I) The real line and itself. In this case, we have Fourier transforms: given f ∈ L2(R, dx), we compute
f̂ ∈ L2(R, dk/2π).

(II) The unit circle and the integers Z. In this case, we have Fourier series: given f ∈ L2(T, dx), we
compute c ∈ `2(Z).

(III) The integers Z and the unit circle. This is the case for using Fourier series to reconstruct the original
function.

(IV) A finite cyclic group of order N and itself. Here, we have discrete Fourier transforms.

This paper elaborates on transforms of type IV. One may define the discrete Fourier transform by fiat.
Instead, though, we consider two motivating constructions.

2 The discrete Fourier transform via Riemann sums

Consider an approximation to a transform of type II. Define TL to be the circle of circumference L. Let f(x)
be continuous on TL. Equivalently, think of f(x) as being periodic on the real line, with period L.

The basis functions are of the form eikx, for some values of k. To see what these values must be, look at
x = L. For eikx to have period L, kL must be an integer multiple of 2π. That is, we take

k =
2π`

L

for ` ∈ Z.

The Fourier coefficients f̂(k) are

f̂(k) = 〈eikx, f(x)〉 =
1
L

∫ L

0

e−ikxf(x)dx.

Form a Riemann sum with N evenly spaced mesh points, deferring for a moment the well-definedness of the
sum on L2(TL, dx). We have

xj = j∆x

where
∆x =

L

N
.

Then the integral is approximated by

1
L

∫ L

0

e−ikxf(x)dx ≈ 1
L

N−1∑
j=0

e−ikxj f(xj)∆x.
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Now recall that the angular frequencies k were also evenly spaced, namely, with

k = `∆k and ∆k =
2π

L
.

Thus the ∆x and ∆k are not unrelated. In fact,

∆k∆x =
L

N
· 2π

L
=

2π

N
.

Making substitutions, we now have for the estimated integral

f̂(k) ≈ 1
L

∑N−1
j=0 e−ikxj f(xj)∆x

= 1
L

∑N−1
j=0 e−i`∆kj∆xf(xj)∆x

= 1
L

∑N−1
j=0 e−i` 2π

L j L
N f(xj) L

N

= 1
N

∑N−1
j=0 e−i2π`j/Nf(xj).

(2.1)

Observe that now there are N input points, f(x0) through f(xN−1). Also observe that, when restricted to
the mesh x = j∆x, the basis functions

eikx = ei2π`j/N

have identical values when ` is shifted by multiples of N . Thus the periodicity of the coefficients arises
naturally. There are N input points and N output points. Phrased differently, a pure sinusoidal input
of frequency 1 is indistinguishable from a pure sinusoidal input of frequency N + 1 when the input data
are sampled only at the N mesh points. (This fact has significant repercussions in the implementation of
signal-processing systems. See [Lyons] for more information.)

An advantage of this derivation of the discrete Fourier transform is that it uses elementary and easily
visualizable Riemann sums. One asks, however, about well-definedness. Since f ∈ C(TL), and since TL is
compact, f ∈ L2(TL, dx). Likewise, f ∈ L1(TL, dx). Due to the continuity, we may without loss of generality
take f to be a particular representative for an equivalence class with respect to Lebesgue measure on TL.

An alternative derivation of the discrete Fourier transform may be obtained by defining a counting measure
χ on TL via

χ(f) =
1
N

N−1∑
j=0

f(xj)

using the same mesh x = j∆x as before. This approach results in the same DFT formula, namely, equation
2.1.

3 Poisson summation on the real line

In section 6, Poisson summation will be used to analyze approximation error in the DFT. First, however,
the theory will be examined on the real line, to fix concepts. The presentation here elaborates on section
24.6 of [Far].

Proposition 3.1. Let L be a positive real number. Let f(x) ∈ L1(R, dx)∩L2(R, dx) with Fourier transform
f̂ ∈ L1(R, dk/2π). Further suppose that ∑

k∈Z 2π
L

f̂(k) < +∞.
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Then ∑
x∈ZL

f(x) =
1
L

∑
k∈Z 2π

L

f̂(k).

Proof. Recall that for k ∈ R we have

f̂(k) =
∫ +∞

−∞
e−ikxf(x)dx.

Now define (this utility function being the central trick of the proof)

S(t) =
∑

x∈ZL

f(x + t).

This sum is finite since f is in L1(R, dx). Since S(t) is well-defined on R/ZL = TL, it has Fourier coefficients

ak =
1
L

∫ L

0

e−iktS(t)dt

for k ∈ Z 2π
L . We may reconstruct S(t) via

S(t) =
∑

k∈Z 2π
L

akeikt. (3.1)

But

ak =
1
L

∫ L

0

e−iktS(t)dt =
1
L

∫ L

0

e−ikt

[ ∑
x∈ZL

f(x + t)

]
dt.

Since f ∈ L1(R, dx), by Fubini’s theorem we may interchange the integral and sum to obtain

ak =
1
L

∑
x∈ZL

∫ L

0

e−iktf(x + t)dt.

Since x ∈ ZL, let x = jL for j ∈ Z. Using change of variable u = jL + t in the integrand, and recalling that
we are restricting k to be in Z 2π

L , we have

ak =
1
L

+∞∑
j=−∞

∫ t=L

t=0

e−iktf(jL + t)dt

=
1
L

+∞∑
j=−∞

∫ u=(j+1)L

u=jL

e−ik(u−jL)f(u)du

=
1
L

+∞∑
j=−∞

∫ u=(j+1)L

u=jL

e−ikuf(u)du

=
1
L

∫ u=+∞

u=−∞
e−ikuf(u)du

=
f̂(k)
L

.
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Now simply evaluate S(t) at t = 0. We have

S(t) =
∑

x∈ZL

f(x + t)

and
S(t) =

∑
k∈Z 2π

L

akeikt =
1
L

∑
k∈Z 2π

L

f̂(k)eikt

so
S(0) =

∑
x∈ZL

f(x) =
1
L

∑
k∈Z 2π

L

f̂(k).

4 Poisson summation on the circle

The Poisson summation formula was worked out on the (familiar) real line in order to give a concrete example
for the more abstract setting. Recall from section 1 that in this paper we are taking Pontryagin duals as
given. In particular, if G is an abelian group, write Ĝ for its dual. In the previous section, we had G = R
with closed subgroup H = ZL and quotient G/H = TL. Now, the dual group for G is Ĝ = R, and the duals
of H and G/H are as before in this paper, namely:

Group Dual
G = R Ĝ = R
H = ZL Ĥ = T2π/L

G/H = TL Ĝ/H = Z 2π
L

Given this terminology, we can walk back through the proof of the Poisson summation formula on the real
line, which will suggest how to correctly write the summation formula for the circle. We took f : G → R,
with f̂ : Ĝ → R. We required ∑

k∈Ĝ/H

f̂(k) < +∞,

and we claimed that ∑
x∈H

f(x) =
∑

k∈Ĝ/H

f̂(k).

The key to the proof was that e−ikx was well-defined on the quotient space Ĝ/H, and that G was the union
of translates of G/H. Now we simply replace G, H, et al. by the following, using the information about ∆x
and ∆k obtained in section 2:

Group Dual

G = R/ZL Ĝ = Z 2π
L

= TL

H = Z L
N /ZL Ĥ = ZN

2π
L

= ZN

(
L
N

)
G/H = R/ZL

Z L
N /ZL

Ĝ/H = Z 2πN
L

= R/Z L
N

= TL/N
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Proposition 4.1. Let L be a positive real number. Let f(x) ∈ L1(TL, dx) with Fourier transform f̂ ∈
L1(Z 2π

L , dk/2π). Further suppose that ∑
k∈Z 2πN

L

f̂(k) < +∞.

Then ∑
x∈ZN

L
N

f(x) = N
∑

k∈Z 2πN
L

f̂(k).

Proof. For k ∈ Z 2π
L we have

f̂(k) =
∫ L

0

e−ikxf(x)dx.

Define
S(t) =

∑
x∈ZN

L
N

f(x + t).

Since S(t) is well-defined on the quotient TL/N , it has Fourier coefficients

ak =
N

L

∫ L/N

0

e−iktS(t)dt

for k ∈ Z 2πN
L . We may reconstruct S(t) via

S(t) =
∑

k∈Z 2πN
L

akeikt. (4.1)

But

ak =
N

L

∫ L/N

0

e−iktS(t)dt =
N

L

∫ L/N

0

e−ikt

 ∑
x∈ZN

L
N

f(x + t)

 dt.

Since f ∈ L1(TL, dx), by Fubini’s theorem we may again interchange the integral and sum to obtain

ak =
N

L

∑
x∈ZN

L
N

∫ L/N

0

e−iktf(x + t)dt.

Since x ∈ ZN
L
N , let x = jL/N for j ∈ ZN . Using change of variable u = jL/N + t in the integrand, and

recalling that we are restricting k to be in Z 2πN
L , we have

ak =
N

L

N−1∑
j=0

∫ t=L/N

t=0

e−iktf(jL/N + t)dt

=
N

L

N−1∑
j=0

∫ u=(j+1)L/N

u=jL/N

e−ik(u−jL/Nf(u)du

=
N

L

N−1∑
j=0

∫ u=(j+1)L/N

u=jL/N

e−ikuf(u)du

=
N

L

∫ u=L

u=0

e−ikuf(u)du

= Nf̂(k).
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Evaluating S(t) at t = 0, we have
S(t) =

∑
x∈ZN

L
N

f(x + t)

and
S(t) =

∑
k∈Z 2πN

L

akeikt = N
∑

k∈Z 2πN
L

f̂(k)eikt

so
S(0) =

∑
x∈ZN

L
N

f(x) = N
∑

k∈Z 2πN
L

f̂(k).

5 The Poisson summation formula for the DFT

Now apply proposition 4.1 not to f(x) but rather to e−ipxf(x)/N .

A little lemma shows that a phase shift in the time domain is a translation in the frequency domain. To see
this, compute:

1
L

∫ L

0

e−ikx
[
e−ipxf(x)

]
dx =

1
L

∫ L

0

e−i(k+p)xf(x)dx = f̂(k + p).

By the lemma and proposition 4.1, we have

1
N

∑
x∈ZN

L
N

e−ipxf(x) =
∑

k∈Z 2πN
L

f̂(k + p). (5.1)

The left-hand side is precisely the N -point discrete Fourier transform, at p, of f(x) on TL. For brevity, call
this f̂D(p). Then equation 5.1 becomes

f̂D(p) =
∑

k∈Z 2πN
L

f̂(k + p). (5.2)

We may summarize the Poisson formula in the following way: The N -point DFT folds energy from all
frequencies which are congruent mod N into the same bin. Thus the error in the DFT is precisely the
amount of energy at frequencies outside the range k = −N/2, . . . , N/2− 1. The Riemann-Lebesgue lemma
[Far] assures us that for f ∈ L1, the Fourier coefficients f̂(p) eventually go to zero. However, as yet we lack a
bound on how fast they go to zero. In particular, consider a sinusoidal input with frequency aN +1, for any
integer a. Then the N -point DFT will fold all the input’s energy into f̂D(1). Yet, the true Fourier coefficient
will have its energy at f̂(aN + 1). This high-frequency signal is highly oscillatory, though, which is to say
that its second derivative takes on large values. This example motivates the following error analysis.

6 First-order error analysis

Compare the right-hand side of equation 5.2 to the continuous Fourier transform

f̂(p) =
1
L

∫ L

0

e−ipxf(x)dx
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for p ∈ Z 2π
L . The error in the DFT with respect to the CFT is

∣∣∣f̂(p)− f̂D(p)
∣∣∣ =

∣∣∣∣∣∣f̂(p)−
∑

k∈Z 2πN
L

f̂(k + p)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈Z 2πN
L ,k 6=0

f̂(k + p)

∣∣∣∣∣∣ .

Proposition 6.1. The error in the DFT depends linearly on the upper bound on the second derivative of the
input. Furthermore, the convergence of the DFT to the true Fourier transform is quadratic in the number of
mesh points.

Proof. Suppose f(x) has bounded second derivative, i.e. let M2 be a positive real number such that for all
x ∈ TL,

|f ′′(x)| ≤ M2. (6.1)

To relate this bound on the second derivative to a bound on f̂(k + p) for k 6= 0, use the derivative property
of the Fourier transform. Letting q = k + p for brevity, this is

f̂ ′(q) = iqf̂(q). (6.2)

A straightforward computation involving the transform f̂ ′(q) yields a harmonic series, which is divergent.
Note, however, that the square harmonic series converges. Thus, a slight trick is called for. Since we are
assuming f ∈ C(TL), we have f ∈ L2(TL, dx). Following the technique of theorem 23.11 of [Far], put
1 = (k + p)/(k + p) and use the Cauchy-Schwarz inequality on `2 to obtain∣∣∣∣∣∣

∑
k 6=0,k∈Z 2πN

L

f̂(k + p)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k 6=0,k∈Z 2πN
L

1
k + p

(k + p)f̂(k + p)

∣∣∣∣∣∣
≤

√√√√ ∑
k 6=0,k∈Z 2πN

L

1
(k + p)2

√ ∑
k 6=0,k∈Z 2πN

L

|(k + p)f̂(k + p)|2

The use of the inequality is justified since we take f ∈ C(TL), hence f ∈ L2(TL, dx), and therefore f̂ ∈
L2(TL, dk/2π).

For the first term, since k ∈ Z 2πN
L , take k = `2πN/L. Then∑

k 6=0,k∈Z 2πN
L

1
k2

=
∑

` 6=0,`∈Z

(
L

`2πN

)2

=
2L2

4π2N2

∞∑
`=1

1
`2

=
L2

2π2N2

π2

6
=

L2

12N2
.

For the other term in the error estimate, by equation 6.2,

∑
k 6=0,k∈Z 2πN

L

|(k + p)f̂(k + p)|2 =
∑

k 6=0,k∈Z 2πN
L

|f̂ ′(k + p)|2 =
∑

k 6=0,k∈Z 2πN
L

∣∣∣∣∣ f̂ ′′(k + p)
k + p

∣∣∣∣∣
2

To relate f̂ ′′(k + p) to the known bound on f ′′(x), we may use the following lemma. Let g(x) ∈ C(TL). By
the compactness of TL, g(x) is bounded: say by a positive real constant M . Then |ĝ(q)| ≤ M. To see this,
compute

|ĝ(q)| =

∣∣∣∣∣ 1
L

∫ L

0

e−iqxg(x)dx

∣∣∣∣∣ ≤ 1
L

∫ L

0

|e−iqxg(x)|dx =
1
L

∫ L

0

|e−iqx||g(x)|dx

=
1
L

∫ L

0

|g(x)|dx ≤ 1
L

∫ L

0

Mdx = M.
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Apply the lemma to the second term in the error estimate:

∑
k 6=0,k∈Z 2πN

L

∣∣∣∣∣ f̂ ′′(k + p)
k + p

∣∣∣∣∣
2

≤
∑

k 6=0,k∈Z 2πN
L

∣∣∣∣ M2

k + p

∣∣∣∣2 = M2
2

∑
k 6=0,k∈Z 2πN

L

∣∣∣∣ 1
k + p

∣∣∣∣2

≤ M2
2

∑
k 6=0,k∈Z 2πN

L

1
k2

=
M2

2 L2

12N2
.

Combining these results yields∣∣∣∣∣∣
∑

k 6=0,k∈Z 2πN
L

f̂(k + p)

∣∣∣∣∣∣ ≤
√√√√ ∑

k 6=0,k∈Z 2πN
L

1
(k + p)2

√ ∑
k 6=0,k∈Z 2πN

L

|(k + p)f̂(k + p)|2

≤ L

N
√

12

√ ∑
k 6=0,k∈Z 2πN

L

|(k + p)f̂(k + p)|2

=
L

N
√

12

√ ∑
k 6=0,k∈Z 2πN

L

|f̂ ′(k + p)|2

=
L

N
√

12

√√√√√ ∑
k 6=0,k∈Z 2πN

L

∣∣∣∣∣ f̂ ′′(k + p)
k + p

∣∣∣∣∣
2

≤ LM2

N
√

12

√√√√ ∑
k 6=0,k∈Z 2πN

L

1
k2

=
L2M2

12N2
.

7 Higher-order error analysis

Now suppose that f is m+1 times differentiable. Then its (m+1)st derivative is continuous on the compact
set TL, and hence is in L2(TL, dx). Furthermore, f (m+1)(x) is bounded, say by Mm+1.

Proposition 7.1. The error in the DFT depends linearly on the upper bound on the (m + 1)st derivative of
the input. Furthermore, the convergence of the DFT to the true Fourier transform is inversely proportional
to Nm+1 where N is the number of mesh points.
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Proof. We may repeatedly apply equation 6.2 to obtain∣∣∣∣∣∣
∑

k 6=0,k∈Z 2πN
L

f̂(k + p)

∣∣∣∣∣∣ ≤ L

N
√

12

√ ∑
k 6=0,k∈Z 2πN

L

|f̂ ′(k + p)|2

≤ L

N
√

12

√√√√√ ∑
k 6=0,k∈Z 2πN

L

∣∣∣∣∣ f̂ (m+1)(k + p)
(k + p)m

∣∣∣∣∣
2

≤ LMm+1

N
√

12

√√√√ ∑
k 6=0,k∈Z 2πN

L

1
k2m

=
LMm+1

N
√

12

√√√√ ∑
` 6=0,`∈Z

(
L

`2πN

)2m

=
Lm+1Mm+1

Nm+1(2π)m
√

12

√ ∑
` 6=0,`∈Z

1
`2m

=
Lm+1Mm+1

Nm+1(2π)m

√√√√2
∞∑

`=1

1
`2m

.

The sum inside the square root is the Riemann zeta function at positive even integers, which is well-known
to be

∞∑
`=1

1
`2m

= ζ(2m) =
22m−1|B(2m)|π2m

(2m)!

where B(2m) is the 2mth Bernoulli number. The first few values are [Mat] ζ(2) = π2/6, ζ(4) = π4/90,
ζ(6) = π6/945, and ζ(8) = π8/9450. Detailed discussion of the Riemann zeta function is beyond the scope of
this paper; for the present purpose, it suffices to know that, for even positive integers 2m, ζ(2m) is bounded
above by π2m. Also,

√
12 < 4. Thus√√√√2

∞∑
`=1

1
`2m

≤

√
22mπ4m

(2m)!
= 2mπ2m

√
1

(2m)!

Thus an error bound in the case f is m + 1 times differentiable is(
L

N

)m+1
Mm+12mπ2m

4(2π)m
√

(2m)!
=

(
Lπ

N

)m+1
Mm+1

4π
√

(2m)!
.
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