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Abstract

Elementary techniques for computation in finite fields are presented, at a level appropriate
for an engineering, computer science or mathematical audience.

Second, elementary Galois theory for finite fields is presented at a level appropriate for
undergraduate or beginning graduate students in mathematics. For the latter, illustrative
properties of a novel logarithmic root chart are developed.

Third, linear feedback shift registers are presented in a manner which connects mathematical
theory and engineering practice.

Fourth, some techniques for software implementation are outlined: using a computer algebra
system for the general case, and in C for the p = 2 case.
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Chapter 1

Introduction

1.1 Purpose

Finite fields are often given a brief treatment in algebra courses, and when they are discussed,
they are discussed in the abstract. This is in fact a testament to the power of theory: Many
properties may be deduced about finite fields using no other information than that they
are fields and that they are finite. However, specific computations are interesting as well as
useful. This paper will present elementary techniques that are readily implementable with
pencil and paper, software or electronic circuitry.

1.2 Context

Why do we care about finite fields in the first place? Among their applications are the
following:

• They are beautiful and interesting in their own right, which is sufficient justification
for a pure mathematician to care about them.

• They have applications in number theory, i.e. pure math as applied to other parts of
pure math.

• As we will see, finite fields have size pn for some prime integer p. Finite fields with
large p and n = 1 are crucial in many cryptosystems, and of course cryptography is
important in today’s electronic commerce as well as other electronic activities requiring
privacy. For another example, the AES cryptosystem [1] is built entirely out of a finite
field with p = 2 and n = 8 (hence its natural operation on bytes): even the S-box is
just reciprocation in the finite field.
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• Finite fields with p = 2 are essential in coding theory [3], [5], which is the study of the
efficient detection and correction of errors in a signal. This is the kind of thing you use
(without even realizing it) whenever you talk on a cell phone or use a data network.

1.3 Scope

Whereas finite fields may be presented in the abstract, this paper will take the opposite
approach by first constructing systems which are fields and which are finite, and then illus-
trating how the resulting fields have properties which the theory told us they would have.
As a result, few proofs will be given; the emphasis is on computation.

Not only will I eschew proofs in favor of computation, but moreover I will defer some com-
putational methods to the appendices, to keep everything simple and smoothly flowing in
the main discourse.

Since this paper cites many well-known theorems without proof, it is not by any means a
standalone treatise on finite fields. For the intentionally omitted theory, please consult any
graduate-level text on abstract algebra. In particular I recommend Dummit and Foote [4].
Also, Lidl and Niederreiter [10] is the standard (and excellent) reference for finite fields.
(Note: Any theorem or algorithm in this paper which I’ve not attributed to a specific refer-
ence either is my own or, more often, is something I consider to be general knowledge.) For
the software-implementation section, I assume only basic familiarity with C.

1.4 Audience

My intended audience is non-specialists and fellow students. For the first few sections, which
discuss how to add, subtract, multiply and divide, I will presume a general familiarity with
abstract algebra, e.g. 444 at Arizona State. For the later sections on Galois theory, I will
of course presume some knowledge of Galois theory. This entails a jump in the level of
prerequisite material, so these latter sections may be omitted. (However, my treatment of
Galois theory is gentle; a reader without previoius exposure with Galois theory should be
able to read these sections.)

My particular concern is for (a) engineers who wish to have a better understanding of what’s
going on, and (b) mathematicians who want be able to perform computations, e.g. for testing
out hypotheses.

7



1.5 Rings and fields; notation

I will assume familiarity with ring and field axioms. Fields discussed in this document
are almost always the finite ones, with occasional mention of the rationals Q, reals R and
complexes C. The only rings discussed are the integers Z, as well as the ring of polynomials
with coefficients in a field. For a field F , the latter is written F [x]. The ideal generated by
a ring element m will be written 〈m〉.

Recall that a ring of polynomials whose coefficients are in a field is a Euclidean domain,
hence a principal ideal domain, hence an integral domain. (Remember FEPUI [feh, pooey!]:
fields ( Euclidean domains ( PIDs ( UFDs ( integral domains.) This means that we
can factor our integers or polynomials, that an ideal is simply the set of all multiples of
some particular integer or polynomial, and that we can divide one integer or polynomial by
another non-zero integer or polynomial to get a quotient and remainder. Furthermore, the
remainder is smaller than the divisor in the usual way in the integers; for polynomials, the
remainder has smaller degree, or is the zero polynomial.
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Part I

Arithmetic
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Chapter 2

The field Fp

One of the many finite-field theorems which this paper will reference (without proof) is that
all finite fields of a given size are isomorphic to one another. This means that I may construct
certain finite fields with the confidence that any others will look something like them. As
the canonical representative of a first family of finite fields, I will select the integers modulo
a prime integer p. These are named Fp, where the font is intended to indicate that they
are of equal importance with Q, R, C, etc. (An older notation still occasionally used in the
literature is GF(p), which stands for Galois field.)

Not all fields are accounted for by the Fp’s, but later we will use the Fp’s to construct all the
remaining finite fields.

2.1 Elements of Fp

Formally, elements of Fp are equivalence classes of integers modulo p, where we say that two
integers are equivalent mod p, written a ≡ b (mod p) or simply a ≡ b(p), iff a − b | p. For
example, if p = 5, we have a set with five elements:

F5 = Z/5Z = {{. . . ,−10,−5, 0, 5, 10, . . .}
{. . . ,−9,−4, 1, 6, 11, . . .}
{. . . ,−8,−3, 2, 7, 12, . . .}
{. . . ,−7,−2, 3, 8, 13, . . .}
{. . . ,−6,−1, 4, 9, 14, . . .}}

Since the integers Z are a Euclidean domain, we may divide any integer a by p to obtain a
quotient q (which we don’t care about) and a remainder r such that 0 ≤ r < p. Clearly, any
two elements of the same equivalence class have the same remainder r, so we take the r’s to
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be the canonical representatives of the equivalence classes. (It is easy to show that reducing
mod p is a ring homomorphism from Z to Z/pZ.) Then, the above five-element set may be
more compactly written as

F5 = {0, 1, 2, 3, 4}

where the overline refers to an equivalence class.

Then, the following two statements are equivalent:

7 ≡ 2 (mod 5)

7 = 2

where the former statement involves integers and the latter involves equivalence classes.
However, I will sloppily omit the overlines and write

F5 = {0, 1, 2, 3, 4}

where it is now implicit that we are working mod 5. From a formal point of view, this is
sloppy; however, it is tolerable and helps avoid a forest of overline bric-a-brac.

2.2 Arithmetic in Fp

Addition, subtraction and multiplication are as you would expect. Examples, again with
p = 5:

• 3 + 4 = 7, which is 2 mod 5.

• 3− 4 = −1, but remember we want our canonical representatives to be between 0 and
p− 1, inclusive, so we say 3− 4 = 4.

• 3 · 4 = 12, which is 2 mod 5.

Simple enough. In fact, addition, subtraction and multiplication work like this in Z/mZ
for any integer m, prime or not. As we’ll see below, though, to have a field (i.e. to have
reciprocals for all non-zero elements) we need the modulus to be prime.

How do we divide? Clearly, it suffices to know how to reciprocate, e.g. if we can compute 1/b,
then we can use multiplication (which we already know how to do) to compute a/b = a·(1/b).
But how do we reciprocate? For example, what is 1/2 mod 5? There are four methods.
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2.3 First reciprocation method in Fp

One answer is to search for a reciprocal. Since finite fields are finite, it is possible to enumerate
all the elements of the field and see which one works: 2 times 0 is 0, nope; 2 times 1 is 2, nope;
2 times 2 is 4, nope; 2 times 3 is 1, aha, so 1/2 = 3. The search method for reciprocation
is acceptable for small p, but if, say, you wanted to compute 1/7 mod 1009 this way, you’d
probably get tired of looking before reaching 865.

2.4 Second reciprocation method in Fp

You might wonder, how do you know there will be an inverse — which is tantamount to
asking, how do we know Fp is really a field? (All the other field axioms besides the existence
of multiplicative inverses, i.e. reciprocals, are easily verified. That is, the integers mod m
form a commutative ring with identity regardless of whether m is prime.) The proof of the
existence of reciprocals mod p is a constructive proof, and so gives our second method for
reciprocation.

I said above that the homomorphism from Z to Fp is the mod operation. The opposite
operation is called lifting. This is not an inverse function, of course, since the mod operation
is not one-to-one. Nonetheless, given an element of Fp, sometimes we want to send it to some
element of Z — usually to the canonical representative which is between 0 and p− 1.

Given an element a of Fp, erase the imaginary overline which I am not writing, i.e. lift a to
the integers. If a is 0 (or is a multiple of p, which means a is 0 mod p), then we expect no
reciprocal. But if a is not a multiple of p, then it is relatively prime to p. This means its
GCD with p is 1. Using the extended GCD, also known as the GCD trick, we can always
write the output of the GCD algorithm as a linear combination of the two inputs, i.e.

1 = as + pt

for some integers s and t. But pt is a multiple of p and so is zero mod p, so

1 ≡ as (mod p)

which means the equivalence class containing s is the reciprocal of the equivalence class
containing a. Above we lifted to Z to do the GCD; now we mod back to Fp by restoring the
imaginary overline, and say that s is the reciprocal of a in Fp.

Now, this is great for proving existence of reciprocals in Fp, but the details of pencil-and-
papering the extended GCD algorithm (details which I’ve omitted) are tedious. (Even using
Blankinship’s algorithm for extended GCD, appendix A on page 84, it’s better but still
tedious). There are two more pleasant ways, as we will see.
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2.5 Third reciprocation method in Fp

The third method uses a little group theory. Namely, recall that in any field F , the non-
zero elements form a group under multiplication — this is called the field’s multiplicative
group, and is written F×, or occasionally F ∗. If Fp has p elements, then there are p − 1
non-zero elements in F×

p .

Recall Lagrange’s theorem, which is your first real theorem in group theory: the order of a
subgroup divides the order of the parent group. Also, given any element a of a finite group,
you can form the cyclic subgroup generated by the element, simply by taking powers of a
until you get the identity e. (You will get the identity eventually: you will eventually run out
of elements and get a loop wherein ai = aj for some i and j, and then you’ll have ai−j = e.)
Also recall that the order of an element, that is, the least positive integer k such that ak = e,
is the same as the order of the cyclic subgroup generated by a.

So if the order of a is k, and since by Lagrange’s theorem k
∣∣ |G|, we have a|G| = e for all a

in G. Now, a smaller power might send a particular a to e, and in fact for non-cyclic groups
a smaller power might suffice to send all elements to e (e.g. the Klein four-group has order
4 but all elements have order 1 or 2). But nevertheless we know that a|G| will always be e,
for any element a of any finite group G.

For the case G = F×
p , where |G| = p− 1 and the identity is 1, we have

ap−1 = 1

for all non-zero elements of Fp. (Hence a quick proof of Fermat’s little theorem.) This has
two direct consequences. First, we can write

ap−2 = a−1

for all non-zero elements, which gives us our third algorithm for reciprocation, the p − 2
algorithm. Second, we can make this true for all elements of Fp (including zero) by writing

ap = a

or
xp − x = 0

which is a polynomial satisfied by all elements of Fp. This sounds like it might be a useful
piece of information to remember.

So, given the p − 2 algorithm, we can easily reciprocate in Fp. What is 1/2 mod 5? Since
5−2 = 3, we can invert any element simply by cubing it. E.g. 23 = 8 which is 3. So 1/2 = 3
mod 5. And we can verify this by writing 2 · 3 = 1 which checks out.
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2.6 Repeated-squaring algorithm for exponentiation

Raising an element a to the p− 2 power by performing p− 3 multiplications is OK for small
p, but not so good for larger p. (E.g. to find 1/7 mod 1009, 1006 multiplications by 7 is
no fun at all.) However, repeated squaring makes it a breeze. To see this by example, let
p = 23. Then we can reciprocate any element a of F23 by raising a to the 21st power. Write
out 21 as a sum of powers of 2, e.g. 21 = 16 + 4 + 1. Then a21 = a16a4a1. Then given a
we can square a to get a2, square that to get a4, square that to get a8, and square one more
time to get a16. Then just multiply the 1st, 4th and 16th powers and discard the 2nd and
8th powers.

Instead of requiring p− 3 multiplications, this requires only approximately log2(p− 2) mul-
tiplications. So you can raise something to the millionth power with only 20 multiplications.
On paper this isn’t too bad, and in a computer it takes only an instant.

2.7 Fourth reciprocation method in Fp; logarithms

One of the finite-field theorems which this paper doesn’t prove is that the multiplicative
group of a finite field is cyclic. This goes back at least to Gauss, who proved that there
are always primitive elements mod p, i.e. always at least one element of F×

p such that all
other elements are powers of it.

In group-theoretic terms, this means there is an element g (g for generator) such that for all
a ∈ F×

p there is a k, with 0 ≤ k < p− 1, such that a = gk. Since ap−1 = 1, these exponents
are actually taken mod p− 1. If a = gk, then a−1 = g−k, or equivalently a−1 = gp−1−k.

This is an even quicker way to reciprocate in Fp, but it comes at a little expense. The p− 2
method requires you only to know what p is; this method requires a little precomputation in
order to also find a generator g. How do you find a generator (i.e. primitive element) mod
p? Some slightly more sophisticated techniques are discussed in appendix C on page 88, but
a simple and quite sufficient method is just to search for one. It turns out that either 2 or 3
works most of the time, and if not, then try 5, etc. You will find one.

For example, with p = 5, powers of 2 are

k 1 2 3 4
2k 2 4 3 1

which runs through all of F×
5 , so 2 is primitive mod 5.

With p = 7, powers of 2 are

k 1 2 3 4 5 6
2k 2 4 1 2 4 1

14



which doesn’t run through all of F×
7 . But, powers of 3 are

k 1 2 3 4 5 6
3k 3 2 6 4 5 1

so 3 is primitive mod 7.

You can similarly show (just by trying it) that 2 is primitive mod 11. I’ll use 11 as an
example of log reciprocation, since 11 is big enough to be a little more interesting.

We saw above that since F×
p is cyclic, we can write any non-zero a as

a = gk.

Then we define the logarithm base g of a to be

logg(a) = k

(This is sometimes called a discrete log since it takes only integer values.)

Now I can tabulate field elements and their logs, sorting by field element, to obtain a log
table (Lidl and Niederreiter call this an ind table, for index ) as follows:

log2(a) = k 0 1 8 2 4 9 7 3 6 5
a = 2k 1 2 3 4 5 6 7 8 9 10

Also, I can sort the log table by log value to obtain an antilog table:

log2(a) = k 0 1 2 3 4 5 6 7 8 9
a = 2k 1 2 4 8 5 10 9 7 3 6

Since a−1 = g−k = gp−1−k, it’s easy to reciprocate just by looking at the antilog table. E.g.
8 = 23 (three places from the left), so 1/8 = 210−3 = 27 = 7 (three places from the right).

You can multiply using the log and antilog tables by the familiar rule logg(ab) = logg(a) +
logg(b), where you must remember to do the addition mod p− 1:

ab = glogg(ab) = glogg(a)+logg(b)

Likewise you can do division in a single step (i.e. instead of finding the reciprocal, then
multiplying by the reciprocal) using the familiar logg(a/b) = logg(a)− logg(b):

a/b = glogg(a/b) = glogg(a)−logg(b)

See also appendix B on page 86 for an efficient way to build large log tables (e.g. in a
software implementation).

15



Chapter 3

The field Fpn

That’s about it for Fp: we know how to add, subtract, multiply and divide, and we have
the polynomial xp − x = 0 of which all elements of Fp are roots. Now we can look at all the
other finite fields.

I went into some detail with Fp, which may have seemed overkill — after all, Fp is just integers
mod p, which are familiar, and who really needs four different techniques for reciprocation
when any one of them would suffice? While Fpn may be a little less familiar, much of what
we for Fpn will be in direct analogy to things in Fp, and those analogies will be instructive.
We’ll see another reason in the next section.

3.1 Field characteristic and prime subfield

Consider the order of 1 in the additive group of a finite field F . This order is called the
characteristic of the field. It cannot be infinite (we would run out of elements) so let M be
the order of 1. Then 1 added to itself M times is 0, i.e. M · 1 = 0. If M is composite, with
non-trivial factors a and b, then we get (a · 1)(b · 1) = 0 which gives zero divisors which are
not present in a field. So, M must be prime and without further ado I rename M to be p.

Furthermore, it’s easy to show that the set of distinct repeated sums of 1 in F (i.e. 1, 1 + 1,
etc.) forms a subfield which is isomorphic to Fp.

3.2 Existence of Fpn

Whenever we have a smaller field K (finite or not) and a bigger field F with K a subset of
F , we say that K is a subfield of F , and that F is an extension field of K. If you write
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down the axioms for a vector space V over a field K (i.e. scalars are elements of K), then
replace the V ’s with F ’s (i.e. vectors are elements of F ), you can simply check off all the
axioms and see that they’re all satisfied. This means that F is necessarily a vector space
over K, and in particular, any finite field is a vector space over Fp for some p. Since the
vector space is finite, the dimension of that vector space is finite; I’ll call it n. This forces
the size of any finite field F to be pn for some prime p and some positive integer n. So if we
construct a finite field, we know it will have prime-power order.

Another finite-field theorem tells us that all finite fields of a given size are isomorphic to one
another. This means that if, given p and n, I can construct even a single finite field of order
pn, I’ll in some sense have constructed them all. It remains only to actually construct such
a field.

To do that, we start by looking at the ring of polynomials with coefficients in the field
Fp, which we call Fp[x]. While each coefficient has only p possible values, the degree can be
arbitrarily large — in particular, even though the coefficients are taken mod p, the exponents
are not, so you can have x100, x1000, etc.

Also notice that there are p− 1 possible degree-0 polynomials (excluding 0 itself), (p− 1)p
of degree 1 (leading coefficient must be non-zero for the polynomial to be linear and the
rest can be anything mod p), (p − 1)p2 of degree 2, etc. and in general (p − 1)pn of degree
n. So although Fp[x] has infinitely many polynomials in it, there are only finitely many
polynomials of a given degree n, and likewise only finitely many polynomials of degree less
than n.

Second, since Fp is a field, Fp[x] is a Euclidean domain (hence a PID and an integral domain)
so it makes sense to talk about irreducible polynomials in Fp[x], and for simplicity we will
take our irreducibles to be monic, i.e. with 1 for the leading coefficient1.

Given a monic irreducible r(x) (for this to be sensible we require deg(r) ≥ 1), we can form
the ideal 〈r(x)〉 generated by it. Since Fp[x] is a commutative ring with identity, this ideal
is nothing more than the set of all multiples of r(x), that is, all those polynomials in Fp[x]
which, when factored into irreducibles, have r(x) as one of their factors. This is in exact
analogy to 〈p〉 being an ideal of Z: the ideal 〈p〉 is the set of all multiples of p in Z; the ideal
〈r(x)〉 is the set of all multiples of r(x) in Fp[x]. Also, since r(x) is irreducible, the ideal
〈r(x)〉 is maximal in Fp[x].

Now2 we simply take the quotient ring Fp[x]/〈r(x)〉. Since Fp[x] is commutative and 〈r(x)〉
1There are technical distinctions between prime and irreducible, which disappear for PIDs. I will nonethe-

less choose to reserve the term prime for integers p which don’t factor any more than into ±p and ±1, and I
will reserve the term irreducible for polynomials which don’t factor into the product of polynomials of lesser
degree. Over Fp, or any field for that matter, we can always play with the leading coefficient and pull out a
scalar factor — but I won’t consider this to be an interesting factorization. That is, over a field, polynomial
factorization is interesting only up to scalars, which is why we choose monics as our standard irreducibles.

2In the general theory, one allows Fq, with q = pm, to be the base field and studies Fqn as an extension.
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is maximal, Fp[x]/〈r(x)〉 is a field — this is what the theory guarantees for us. Let n be the
degree of r(x). Then we write

Fpn = Fp[x]/〈r(x)〉

(When we formed Fp = Z/pZ, we saw that we got a ring whether or not p was prime, but
needed p prime to get a field. Here too, Fp[x]/〈r(x)〉 is a ring regardless of whether r(x)
is irreducible, but we’ll need it to be irreducible so that we can reciprocate all non-zero
elements.)

You might ask if there is a monic irreducible for all p and n, and you might also ask what
happens if there is more than one — how can Fpn be uniquely defined? The short answer is
that the finite-field theorems guarantee there is in fact always at least one monic irreducible
(see section 5.8) for all p and n, and if there is more than one (which generally there is)
then all such fields are isomorphic to one another. Later on in this paper we’ll look at those
isomorphisms in more detail.

So what does one of these Fpn ’s look like? How do we compute in it? Where’s the beef?

When we constructed Fp, we took the infinite set Z, then divided by p, discarded the quotient
and kept the remainder to get a finite set of possible remainders 0 through p−1. We defined
elements of Fp to be the set of equivalence classes where two integers were equivalent if they
had the same remainder.

Here we can do the same thing: Fp[x] is a Euclidean domain so we can divide any polynomial
by r(x) to get a remainder. Now, Fp[x] is not totally ordered, but it is partially ordered by
degree. When we divide by r(x), we get a quotient which we again discard, and we get a
remainder which is zero, or whose degree is less than r(x)’s degree. To see how that works,
I’ll do a few more computational examples.

3.3 Computation in Fp[x]

Since Fp[x] is a ring, we can add, subtract and multiply. Since it’s a Euclidean domain, we
can divide and get a quotient and a remainder. It’s important to remember this distinction:
e.g. in Z, 9/4 has quotient 2 and remainder 1, whereas in Q it’s exactly 9/4 with never any
remainder. Here we’re doing ring division, with quotient and remainder 3.

All these operations are done in precisely the same way you learned to do arithmetic in

However, Fq is precisely what we’re still learning to construct, so I’ll defer use of this idiom.
3Fp[x] does have a field of fractions, as Z has Q, which we call Fp(x): the field of rational functions

in x with coefficients in Fp. This is an infinite field of characteristic p, which makes it a little interesting.
However, we won’t deal at all with the field Fp(x) in this paper. To dispel another frequent misconception
while we’re at it: Fpn is not Z/pnZ, except for n = 1: in particular Z/pnZ has zero divisor p whenever n > 1
so it cannot be a field.
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elementary school — with one small exception.

First, for brevity of notation I’ll often strip off the x’s, exponents and plus signs from elements
of Fp[x]. E.g. x3 + x2 + 1 will be simply 1101. (If p were greater than 10, which it won’t be
from here on out, I would write 1, 1, 0, 1 to avoid ambiguity.) This compact notation will
be familiar from synthetic division in high school. Then x3 + x2 + 1 is an example of what I
will refer to as full notation.

Now, addition is just like integer addition in elementary school (and similar to synthetic
addition of polynomials in high school) with the one small exception that there are no
carries. E.g. with p = 5,

1044

+ 231

------

1220

Likewise,

1044

- 231

------

1313

We simply operate coefficientwise, using Fp arithmetic which we already know how to do.
Remember that since the coefficients are in Fp, we always want coefficients between 0 and
p− 1, so if a coefficient goes negative on subtraction, add p to the difference.

Multiplication is more of the same: form partial products by multiplying scalars times
polynomials, then add the partial products. Again with p = 5:

1044

* 231

------

1044

3022

2033

------

234014

The last thing to do is division. (I emphasize that this is still quotient-and-remainder division
in the ring Fp[x].) And it’s just what you’d think. Remember that you don’t do carries,
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but also remember that there’s no concept of “less than” for coefficients. E.g. the integer
231 doesn’t go into the integer 114 because 231 is bigger than 114. But here, no problem.
To get each quotient digit, divide the leading coefficient of your running remainder by the
leading coefficient of the divisor (which is necessarily non-zero since you’re not dividing by
zero), and we saw in chapter 2 that you can always do that in Fp. But do stop when the
degree of the running remainder is less than the degree of the divisor. For example:

33 = quotient

+--------

231 | 1044

|- 143 1st quotient digit = 3 since 1/2 = 3 mod 5; 231 * 3 = 143

+--------

| 114

|- 143 2nd quotient digit = 3 since 1/2 = 3 mod 5; 231 * 3 = 143

+--------

| 21 = remainder

so here the quotient is 33 and the remainder is 21. Using the full notation, this means
x3 + 4x + 4 is 2x + 1 mod 2x2 + 3x + 1. (Note that 231 is not irreducible, and doesn’t need
to be — this example merely shows ring division for some arbitrary ring elements.)

Next we need to know how to find irreducibles r(x), and then we’ll have all the machinery
we need to take remainders when constructing Fp[x]/〈r(x)〉.

3.4 Simple determination of irreducibles in Fp[x]

In appendix D on page 89 I give some techniques for irreducibility testing. Here I’ll just give
some simple methods.

If a polynomial has degree 3 or less and factors into smaller-degree terms, then at least one
of the factors must be linear. We know that linear factors correspond to roots: If a is a root
of f(x), then f(x) has x − a as a factor and vice versa. And it’s easy to check for roots in
Fp, since Fp is finite: Just try all the elements.

This gives one method for irreducibility testing for n ≤ 3: Evaluate r(0), r(1), . . . , r(p− 1)
and if those are all non-zero, r(x) is irreducible. E.g. with p = 2 and r(x) = x3 + x + 1,
r(0) = 1 and r(1) = 1 so x3 + x + 1 is irreducible.

Even for polynomials of degree higher than 3, the root test can be used to quickly determine
that a polynomial is not irreducible. When p = 2, this is particularly easy: r(0) is just the
constant term, so if the constant term is 0, r(x) is reducible (except for r(x) = x). Also, r(1)
is just the sum of coefficients mod 2, so if there is an even number of non-zero coefficients,
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r(x) is reducible (except for r(x) = x + 1). E.g. with p = 2, x37 + x28 + x9 + x7 + x is
reducible, as is x37 + x28 + x9 + 1.

The second simple method for irreducibility testing (after you’ve already checked for linear
factors via the root test) is trial division. Since there are finitely many polynomials in Fp[x]
with degree less than the degree of r(x), just try them all. To be a little more sophisticated,
avoid the trial factors you know are reducible. (An analogy with the integers: You don’t
have to test 6 as a factor of some number n, if you’ve already tried, or will try, 2 and 3.)
Also, try factors with degree only up to n/2, since if there were factors of higher degree,
you’d have already found the corresponding factor of lower degree. (Another analogy with
the integers: when factoring an integer n by trial division, try only up to

√
n.)

Let’s use the above to enumerate all irreducible polynomials of degree up to 4 with p = 2.

For n = 1, we have x and x + 1 (10 and 11 using the compact notation), which are already
linear and therefore irreducible.

For n = 2, we have (using the compact notation) 100, 101, 110 and 111. Two of these have
a zero constant term and so have 0 as a root; 101 has an even number of 1’s and so has 1 as
a root. That leaves 111 (x2 + x + 1) which is quadratic and rootless, therefore irreducible.

For n = 3, there are the eight possibilities

1000, 1001, 1010, 1011, 1100, 1101, 1110, 1111

All those ending in 0 have 0 as a root; 1001, 1010, 1100 and 1111 have 1 as a root. That
leaves 1011 and 1101 (x3 + x + 1 and x3 + x2 + 1) which are irreducible since quadratic and
rootless.

For n = 4, there are the sixteen possibilities

10000, 10001, 10010, 10011, 10100, 10101, 10110, 10111,

11000, 11001, 11010, 11011, 11100, 11101, 11110, 11111

The root test pares the list down to

10011, 10101, 11001, 11111

Since the root test excludes all linear factors, only the quadratic factors remain and we may
restrict ourselves to the irreducible quadratics. There is only one, namely, 111. Synthetic
division as above shows that 10101 = 1112; the other three have non-zero remainder and
therefore must be irreducible.

To summarize:

Monic irreducibles with p = 2, n = 1 through 4
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n Compact notation Full notation

1 10 x
11 x + 1

2 111 x2 + x + 1
3 1011 x3 + x + 1

1101 x3 + x2 + 1
4 10011 x4 + x + 1

11001 x4 + x3 + 1
11111 x4 + x3 + x2 + x + 1

These will be used frequently in the examples to follow.

A third and time-honored method for irreducibility testing is simply to consult a table. See
Lidl and Niederreiter for lots of tables, or my very abbreviated version in appendix H.1 on
page 97.

3.5 Elements of Fpn

So now we know how to find monic irreducibles r(x) for any p and n. (The theory guarantees
us we will find at least one.) Also, we know how to do ring division by r(x), to produce
remainders. Note that if r(x) has degree n, then the remainders all have degree less than n.
E.g. with p = 2 and n = 2, selecting r(x) = x2 + x + 1, possible remainders are

0, 1, x, x + 1

so there are four equivalence classes (i.e. all polynomials whose remainder mod r(x) is 0, 1,
x or x + 1).

More generally, there are p possibilities for each coefficient, and n of them: from the x0 term
up to and including the xn−1 term. Thus there are pn elements in this set which jives with
what the theory told us above, from vector-space considerations.

For the integers mod p, I said we often sloppily move between equivalence classes mod p,
and canonical representatives. E.g. 7 ≡ 2 mod 5 (correct), 7 = 2 (correct), 7 = 2 (sloppy).
And I did that fully aware of the sloppiness — since it is tolerable, and since the alternative
is an undesirable forest of overlines.

However, with this second mod — polynomials mod r(x) — I will not be sloppy. Rather,
I’ll use a more precise notation from field theory. Let x+ 〈r(x)〉 be the set of all multiples of
r(x), plus x. Let u = x + 〈r(x)〉. (If you like, u = x using the overline notation from section
2.1 on page 10.) These are all the polynomials in Fp[x] which are in the same equivalence
class as x. Then I write
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Fp[x]/〈r(x)〉 ∼= Fp(u)

i.e. we adjoin to the field Fp a root u of r(x).

My first reaction to this a few months ago was, “Where did this u come from? What was
wrong with x?” But in fact, x is an element of Fp[x], the polynomial ring, and u is an
element of the finite field Fpn = Fp[x]/〈r(x)〉 (which we haven’t yet seen is really a field).
This apparently subtle distinction turns out to be important later on, so that we don’t go
mad when we talk about splitting fields. And really, u does behave much like x does, so it’s
not a completely new thing: if r(x) is, say, x4 + x + 1 with p = 2, then u4 + u + 1 is zero.

I will occasionally write such elements either using the full notation such as

0, 1, u, u + 1

or in the compact notation such as
00, 01, 10, 11

(Notice that, without context, one can’t distinguish compactly written ring elements (in x)
from field elements (in u). So, in what follows I will be careful to always make it clear what
I’m referring to.)

3.6 Addition, subtraction and multiplication in Fpn

Addition and subtraction of elements of Fpn is easy: Just do it componentwise. Addition
and subtraction are just the same as in Fp[x] so I won’t even write new examples.

For multiplication, there are two methods. The first is what I call the ring-and-reduce
method; the second is reduce-en-route. (You can call them RAR and RER, and pretend
you’re a dog — or a car that won’t start. Your acquaintances will think you’re daft, if they
didn’t already.)

For the former (RAR), just combine lifting, ring multiplication and reduction mod r(x),
which were described in section 3.3 on page 18. (E.g. to compute 3 · 4 in Fp, we lifted 3 and
4 from Fp to Z, took 3 times 4 is 12 in the ring Z, then divided by 5 to get the remainder 2
back in Fp.) For example, with p = 2 and r(x) = x4 +x+1, to compute (u3 +1) ·(u2 +u+1),
first lift from Fpn to Fp[x] to obtain (x3 + 1) · (x2 + x + 1), then multiply in Fp[x]:

1001

* 0111

------

1001
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1001

1001

------

111111

which gets you the unreduced product. Then divide by r(x) and take the remainder, dis-
carding the quotient:

11

+--------

10011 | 111111

| 10011

+--------

| 11001

| 10011

+--------

| 1010

So, with p = 2 and r(x) = x4 + x + 1,

1001 · 0111 = 1010

or with full notation,
(u3 + 1) · (u2 + u + 1) = u3 + u

The second multiplication method (RER) is essentially the same, but is sometimes handier.
Proceeding by example with p = 2 and r(x) = x4 + x + 1,

u4 + u + 1 = 0

from which
u4 = −u− 1

With p = 2, minuses are pluses so
u4 = u + 1

but please be careful for p 6= 2. In the RAR method, since input degrees are n − 1 or less,
the degree of the unreduced product can be as big as 2n− 2. In the RER method, whenever
you see anything of degree n, reduce it at first appearance by replacing, for example, u4 with
u + 1.

Why RER? Two reasons. First, in a computer program, the RAR method takes twice the
storage space for the unreduced product; the RER method does not. But more importantly
for pencil-and-paper arithmetic, while the RAR method is probably easier for multiplication
in general, the RER method is easier when you’re multiplying by u, as we’ll see in the next
section.
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3.7 Primitivity in Fpn

We saw above that the multiplicative group F×
p is cyclic, and so there are always primitive

elements mod p. Your first guess for a generator might be 2, and often 2 is a generator, but
not always. For p = 7, we saw that 2 doesn’t generate F×

7 , but 3 does.

Likewise, it can be shown that the multiplicative group F×
pn is cyclic, and so there are always

primitive elements mod r(x). Your first guess might be u, which sometimes is primitive but
not always4. If u is primitive, for brevity I say that u is a generating root. Also, r(x) in
Fp[x] is said to be a primitive polynomial5 if u is a primitive element mod r(x).

(Note: This is a somewhat non-standard use of the terms primitive and generator in the
context of field theory, as described in more detail in section 5.7.)

We saw above that there exists a count function for the number of monic irreducibles given p
and n. That function always takes positive values, so you’ll always find a monic irreducible.
Likewise there exists a count function for the number of primitive monic irreducibles given
p and n (see section 5.8). This function also always takes positive values, so you’ll always
find a primitive monic irreducible. In particular, when there is only one monic irreducible
(p = 2, n = 2), then that monic irreducible is necessarily primitive.

3.8 Powers of u and LFSRs

Taking powers of u is where the RER method for multiplication shines. You can do the
following:

• Start with u.

• In the compact notation, shift all coefficients left by one position. This amounts to
multiplying by u.

• If there is a non-zero coefficient in the un position, use r(u) to get rid of it.

For example, with p = 2, n = 4, r(x) = x4 + x + 1, which is 10011, u4 + u + 1 = 0 so I may
solve for u4 to get u4 = −u− 1, which is u + 1 since p = 2. So whenever I see 10000, I can
subtract it out and add in 0011.

4Whether or not u is a primitive element, it has some order in the multiplicative group. Lidl and
Niederreiter [10] (as well as Berlekamp [3]) call this order the period of r(x). In their tables, they call the
period e.

5For polynomials with coefficients merely in a ring rather than a field, there is a completely different
definition of primitive polynomial — namely, a polynomial the GCD of whose coefficients is a unit. However,
it’s clear from the context which kind of primitivity we’re talking about.
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k uk

1 0010
2 0100
3 1000
4 10000 = 0011
5 0110
6 1100
7 11000 = 1011
8 10110 = 0101
9 1010

10 10100 0111
11 1110
12 11100 1111
13 11110 1101
14 11010 1001
15 10010 0001

When p = 2, regardless of n, addition is the XOR operation (exclusive or). This shift-left-
and-fold-in business can be implemented efficiently in an electronic circuit in which case it
is called, aptly enough, a linear feedback shift register, or LFSR6. These circuits are
important in coding theory and cryptography. With initial data set to 1, clearly the number
of iterations before the sequence repeats will be maximal when u is a primitive element, i.e.
when r(x) is primitive, since a left shift is equivalent to multiplying by u. Hence the saying
that “primitive polynomials give rise to maximum-period linear feedback shift registers”.
Schneier [13] has a lot more to say about LFSRs. I also discuss LFSRs in part III of this
paper. I discuss primitivity testing in greater detail in appendix E on page 92.

3.9 First reciprocation method in Fpn

We now know how to add, subtract and multiply in Fpn , and as with Z/mZ, all this works
regardless of whether r(x) is irreducible, i.e. whether or not Fp[x]/〈r(x)〉 is a field. But how
do we divide? Given a/b, it suffices to know how to reciprocate b, since then we can use
multiplication (which we already know how to do) to multiply a and 1/b.

As with Fp, there are four methods for reciprocation. The first is simply a search, and for
small pn this is quite fine. What is 1/u mod x4 + x + 1? You can try 0000, 0001, 0010, etc.
until you happen upon 1001.

6Specifically, what I show here is a reflected Galois-configuration LFSR, which is distinct from Fibonacci-
configuration LFSRs which you may encounter in the literature. Nonetheless, characteristic polynomials are
the same.
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3.10 Second reciprocation method in Fpn

You might wonder if the search method will always work, i.e. if Fpn is really a field. The
proof of the existence of reciprocals mod r(x) is a constructive proof, and so gives our second
method for reciprocation.

As with integers, given f(u) in Fpn , lift to f(x) in Fp[x]. If f(x) is 0 (or is a multiple of
r(x), which means f(x) is 0 mod r(x)), then we expect no reciprocal. But if f(x) is not a
multiple of r(x), then it is relatively prime to r(x) since r(x) is irreducible. This means its
GCD with r(x) is 1. Using the extended GCD, we can always write the output of the GCD
algorithm as a linear combination of the two inputs, i.e.

1 = f(x)s(x) + r(x)t(x)

for some s(x) and t(x) in Fp[x]. But rt is a multiple of r and so is zero mod r, so

1 ≡ f(x)s(x) mod r(x)

which means the equivalence class of s(x) is the reciprocal of the equivalence class of f(x).
After doing the mod operation to get back to Fpn , s(u) = 1/f(u). (Actually, the GCD is a
scalar, not necessarily 1, so go ahead and compute the GCD, then divide s(x) by it.)

This is great for proving existence of reciprocals, but just as in the Fp case, the details of
pencil-and-papering the extended GCD algorithm are tedious. (See appendix A on page 84
for more information on the extended-GCD method.) There are two better ways, as we will
see.

3.11 Third reciprocation method in Fpn

Third, we can use Lagrange’s theorem, just as in Fp, and recognize that the multiplicative
group F×

pn has order pn − 1. Therefore for all a in F×
pn ,

apn−1 = 1

from which
apn−2 = a−1

This is the pn − 2 rule for reciprocation. E.g. in F24 , we just raise a to the 14th power. As
above, the repeated-squaring method for exponentiation (section 2.6, page 14) can dramat-
ically reduce the number of multiplications needed.

Note also that we can make this true for 0 as well, i.e. for all of Fpn , by writing

xpn − x = 0

so we have a polynomial of which all elements of Fpn are roots.
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3.12 Fourth reciprocation method in Fpn; logarithms

Fourth, we can use the fact that F×
pn is a cyclic group, then precompute a primitive element.

(If we already know that r(x) is a primitive polynomial, then we know u will be a primitive
element.) Then, we can use logarithms. If g is a primitive element mod r(x), then for all a
in Fpn ,

a = gk

for some 0 ≤ k < pn − 1. Then

a−1 = g−k = gpn−1−k

For example, with p = 2, n = 4 and r(x) = x4 +x+1 as above, and using g = u, take powers
of u using the RER method and sort by field element to obtain the log table:

logg(a) = k a = gk

15 0001
1 0010
4 0011
2 0100
8 0101
5 0110

10 0111
3 1000

14 1001
9 1010
7 1011
6 1100

13 1101
11 1110
12 1111

and sort by log value to obtain the antilog table:
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logg(a) = k a = gk

1 0010
2 0100
3 1000
4 0011
5 0110
6 1100
7 1011
8 0101
9 1010

10 0111
11 1110
12 1111
13 1101
14 1001
15 0001

It’s easy to reciprocate just by looking at the tables. E.g. 0011 = 00104, so 1/0011 =
001015−4 = 001011 = 1110.

You can multiply using the log and antilog tables by the familiar rule logg(ab) = logg(a) +
logg(b), where you must remember to do the addition mod pn − 1:

ab = glogg(ab) = glogg(a)+logg(b)

Likewise you can do division in a single step (i.e. instead of finding the reciprocal, then
multiplying by the reciprocal) using the familiar logg(a/b) = logg(a)− logg(b):

a/b = glogg(a/b) = glogg(a)−logg(b)

As well, you can use logs to exponentiate (which will be useful below):

ap = glogg(ap) = gp logg(a)

See also the tables in section H.3 on page 99, or the much more extensive list in Lidl and
Niederreiter [10].

In the pre-electronic era, such tables were the bee’s knees. Nowadays, log tables might
not seem as useful as they once were. But in fact, they can be used inside a computer
program to implement lightning-fast finite-field arithmetic — at least, for fields that are
small enough to tabulate in main memory. For example, the reference implementation of the
AES cryptosystem [1] multiplies in F28 using log and antilog tables, with a modest memory
requirement of half a kilobyte.

See also appendix B on page 86 for an efficient way to build large log tables (e.g. in a
software implementation).
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Part II

Galois theory
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Chapter 4

The universal polynomial xpn − x

Now we know how to add, subtract, multiply and divide in Fpn , and we have the polynomial
xpn − x = 0 of which all elements of Fpn are roots. It’s time now to look at the universal
polynomial xpn − x.

The universal polynomial is really the key to the castle. From here we’ll get all sorts of
information about splitting fields, subfields, Galois structure, etc.

4.1 Reducibility of the universal polynomial over Fp

The first theorem of interest is that xpn − x is reducible in Fp[x], and factors1 into all the
monic irreducibles of degree d for all d dividing n.

For example, in section 3.4 on page 20 we listed out all the monic irreducibles for p = 2, and
n up to 4. What are the divisors d of 4? Of course, 1, 2 and 4. It is easy to see (you can
check by multiplying the factors back up again) that x16 − x has the following six factors in
F2[x]:

d = 1: x, x + 1
d = 2: x2 + x + 1
d = 4: x4 + x + 1, x4 + x3 + 1, x4 + x3 + x2 + x + 1

1Above we discussed how to find irreducibles. Assuming we know how to factor (in fact there are efficient
factorization algorithms for Fp[x], e.g. the Berlekamp algorithm [10, Ch. 4.1] and appendix F), we know we
can find monic irreducibles merely by factoring.
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4.2 Fpn as a splitting field

Now, this factorization of xpn−x is in Fp[x] so it as yet has nothing to do with Fpn . The next
key theorem is that xpn − x splits2 into linear factors in Fpn [x], that is, Fpn is the splitting
field of xpn − x. (In fact, in a theoretical approach to finite fields, in constrast to the
computational approach taken in this paper, one often starts with the universal polynomial
and defines Fpn as its splitting field.) Specifically, xpn − x has no multiple roots, and the pn

distinct roots are precisely the pn distinct elements of Fpn .

What does it really mean for Fpn to be a splitting field of a polynomial with coefficients in
Fp, i.e. for Fpn to be an extension field of Fp? Here is precisely where it matters that I kept
x and u distinct in section 3.5 on page 22. Also the compact notation comes in handy.

Here is an analogy with the reals: The polynomial x2 + 1 is irreducible over R, yet it splits
into linear terms over C, namely, x2 + 1 = (x + i)(x − i). Also recall that sometimes when
first proving that C is a field, we write complex numbers a + bi as ordered pairs (a, b): a is
the base part and b is the extension part. Likewise, numbers such as 0001, 0011, 1011 etc.
are elements of the extension field Fpn , where the last digit is the base part (in Fp) and the
others are the extension parts.

So x2 +1 has coefficients strictly in R, but it takes C to get it factored down to linear terms.
Going the other way, notice that (x + i)(x − i) has complex numbers in it, but when we
do the multiplication back to x2 + 1, the imaginary parts magically cancel out leaving only
purely real coefficents.

Likewise for polynomials in Fp[x]. It can be proved that any irreducible polynomial f(x) of
degree n with coefficients in Fp splits into linear terms as long as the coefficients are extended
to be in Fpn . For example, x2 + x + 1 was above shown irreducible over F2. Yet it’s easy to
verify by FOILing that (x+10)(x+11), using compact notation, or (x+u)(x+u+1) using
the full notation, is a factorization in F22 . Recall that anything plus itself is zero in F2 and
that u2 = u + 1 in F22 , using x2 + x + 1 as the monic irreducible:

(x + u)(x + u + 1) = x2 + ux + x + ux + u2 + u

= x2 + x + u2 + u

= x2 + x + u + 1 + u

= x2 + x + 1

2More generally, a monic irreducible f(x) of degree n in Fp[x] factors into d terms each of degree n/d in
Fpd [x] for all d|n. For d = n, we have n terms of degree 1, i.e. a splitting into linear factors.
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4.3 The root chart

The factorization of xpn − x into irreducibles over Fp is unique, but the details of the fac-
torization into linear terms over Fpn clearly will depend on our choice of r(x) defining Fpn

arithmetic. (One of the field theorems is that any two splitting fields of the same polynomial
are isomorphic, which together with the universal polynomial can be used to show that any
two finite fields of order pn are isomorphic. Yet the arithmetic isn’t bodily identical.)

For p = 2, n = 4, we saw in section 3.4 on page 20 that there are three possibilities for r(x).
Let

r1(x) = x4 + x + 1 = 10011

r2(x) = x4 + x3 + 1 = 11001

r3(x) = x4 + x3 + x2 + x + 1 = 11111

be the three monic irreducibles for F24 .

I’ll spare the details of the factorization algorithm (which in any case are better left to a
computer). The factorization of x16 − x into linears over F24 , using r1, r2 and r3 to define
the finite-field arithmetic, is as follows. Since I’m factoring into linear terms over a splitting
field, all the factors are of the form (x−a) for some a. To save space, I’ll just write the roots
(the a’s).

Note: The compact notation in the first column (elements of the polynomial ring F2[x])
omits the variable x; the compact notation in subsequent columns (elements of the field F24)
omits the variable u.

Root chart for x16 − x over F24

Irr. factors Roots mod r1 = 10011 Roots mod r2 = 11001 Roots mod r3 = 11111
over F2

00010 0000 0000 0000
00011 0001 0001 0001
00111 0110 0111 1011 1010 1101 1100

r1: 10011 0010 0100 0011 0101 0111 1100 0110 1101 0111 1010 0110 1011
r1: 11001 1011 1001 1101 1110 0010 0100 1001 1110 0011 0101 1110 1001
r1: 11111 1000 1100 1111 1010 1000 1111 0011 0101 1111 1000 0010 0100

Also, in the first column where I write the monic irreducibles for degrees d dividing 4, I’ve
marked the ri’s since these are the same three polynomials that define F24 the arithmetic.
That is, we are factoring ri mod rj. (The smaller-degree factors of xpn − x have to do with
subfields, as we shall see below.)

Note: This chart may be obtained in a top-down fashion by factoring the universal polyno-
mial xpn − x over Fpn , or it may be obtained in a bottom-up fashion (with far less effort).
Both methods are described in appendix G on page 96.
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The root chart is chock-full of information, as the next several sections will explore.
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Chapter 5

Basic Galois theory for Fpn

Eadem mutata resurgo (Though changed, I arise the same) — Jakob Bernoulli

One of this paper’s main purposes is to provide examples to assist in the study of Galois
theory. Now, since (as we shall see) the Galois group of a finite field is always cyclic, and
since all extensions are Galois1, one does not obtain the full panoply of behavior exhibited
by algebraic number fields. However, finite fields are nice in part because we can write down
all the elements of the field (try that with an algebraic number field!). Also, once you are
comfortable with computing in finite fields you’ll be in a good position to compute in alge-
braic number fields — a lot of the same quotient-and-remainder business over a polynomial
ring comes into play.

5.1 Subfields

For each Fpn , there is a unique subfield Fpd for all d |n. Why? First, for the dimension pd:
suppose you have a subfield of Fpn . By the vector-space considerations as discussed in section
3.2, the subfield is an extension field of its prime subfield Fp and so its size is necessarily a
p-power, pd, for some 1 ≤ d ≤ n. So, we can call it an Fpd . For the same reason, since Fpn

is an extension field of Fpd , pn is a power of pd, from which d|n.

(As well, if Fpd is a subfield of Fpn , the multiplicative group of the former must be a subgroup
of the multiplicative group of the latter, so pd − 1 must divide pn − 1. It’s easy to see, using
integer division, that d|n if and only if pd − 1 | pn − 1.)

1The Galois group is cyclic, hence abelian, so all subgroups of the Galois group are normal, so all the
subfields are Galois over Fp.
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So, if there is a subfield of Fpn , then it is an Fpd for d|n. As above, the prime subfield Fp

always exists. The fact that a unique Fpd does in fact exist as a subfield of Fpn for all the
remaining d|n is proved using Galois theory2.

For example, for F26 we expect subfields F2, F22 and F23 , along with F26 itself. These subfields
are easy to construct. Recall that any field consists of 0 along with the field’s multiplicative
group, and that the multiplicative group of any finite field is cyclic. Any subfield of a finite
field must contain 0, and the multiplicative group of the subfield must be a subgroup of the
multiplicative group of the larger field. The former will have pd − 1 elements; the latter will
have pn − 1 elements, and as above, pd − 1 | pn − 1 when d|n.

Suppose we have a cyclic group of order ab with generator g. Then there is a subgroup of
order b generated by ga. E.g. (Z6,⊕) has order 6 and generator 1; elements are 0, 1, 2, 3, 4
and 5. There is an order-3 subgroup generated by 2, with elements 0, 2 and 4.

Back to finite fields, by the same token, if F×
pn has generator g, then F×

pd has generator

g(pn−1)/(pd−1). For example, let g be a generator of F×
26 . To construct F23 as a subfield of F26 ,

let g be a generator of F×
26 . Then F23 is the 0 element along with the 7 distinct powers of

g63/7 = g9. (For now, I’m saying that this F23 is the specified subset of F26 , but I’m not yet
saying which elements of this F23 map isomorphically to which elements of a standard F23 ,
where by “standard” I mean a field defined by a monic irreducible cubic in F2[x]. More on
that below.)

In the root chart, we can see subfields. Look at the elements 0 and 1, along with the roots
of x2 + x + 1. Mod x4 + x + 1, these four elements are 0, 1, u2 + u and u2 + u + 1. Using
addition, subtraction, multiplication and division you can easily see that these four elements
satisfy all the field axioms, and so must be a field.

With reference to the antilogarithm table in section 3.12 on page 28, note that u2 + u,
u2 + u + 1 and 1 have logarithms 5, 10 and 15, respectively with respect to the generator u,
i.e. the elements of the copy of F22 inside F24 are 0, u5, u10 and u15 = 1. I refer to this as
the subfield/log criterion: elements of a subfield may be determined by their logarithms.
Specifically, an element of Fpn is also an element of an Fpd , where d|n, if and only if it is zero
or its logarithm is a multiple of (pn − 1)/(pd − 1).

On the other hand, earlier in this paper we saw one (in fact, the only) monic irreducible for
p = 2, n = 2: namely, x2 + x + 1. (The root chart bears this out since there is only one
quadratic factor for x16 − x.) This leads to an F22 with elements 0, 1, v, v + 1 where I use v
instead of u to emphasize that these are different equivalence classes. Since these two copies
of F22 are fields and have the same order, they must be isomorphic. Below we’ll construct
an explicit isomorphism between the two. More importantly, this is what people mean when

2As will be seen below, Gal(Fpn/Fp) = 〈ρ〉 with |ρ| = n, where ρ is the p-power map. From group theory,
a cyclic group of order n has a unique subgroup of order d for all d|n. By the Galois correspondence, this
means there is a unique Fpd for all d|n.
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they say things like “F22 ⊂ F24”: They do not mean that the x2 + x + 1 field is a subfield of
the x4 + x + 1 subfield with v mapping to u (it clearly is not). Rather they mean that the
F22 field of x2 + x + 1 may be embedded (i.e. mapped with a 1-1 homomorphism) into the
x4 + x + 1 field F24 .

5.2 Frobenius automorphisms

It is easy to show that the map which raises elements of Fpn to the pth power is an auto-
morphism on Fpn , called the Frobenius automorphism. For the additive homomorphism
property, use the freshman’s dream for fields of characteristic p: (a + b)p = (ap + bp). (In
the binomial expansion,

(
p
i

)
is 0 mod p except for i = 0, p in which case it is 1.) For the

multiplicative homomorphism property, (ab)p = apbp. For injectivity, ap = bp =⇒ ap− bp =
0 = (a − b)p =⇒ a = b since fields have no zero divisors. For surjectivity, the preimage of
any a under the Frobenius map is apn−1

.

Recall from section 2.5 on page 13 that we have ap = a for all elements of Fp. That is, the
automorphism ρ which takes pth powers is the identity on the prime subfield Fp of Fpn .

5.3 Galois group and Frobenius orbits

Look at the action of ρ on an element a of Fpn : ρ(a) = ap; ρ2(a) = ρ(ρ(a)) = (ap)p = ap2
;

etc. up to ρn−1(a) = apn−1
. But then ρn(a) = apn

= a so ρn = ρ0 = ι, the identity map. This
is how we see3 that the Galois group is in fact cyclic of order n, generated by the p-power
map ρ. That is:

Gal(Fpn/Fp) = 〈ρ〉; |ρ| = n

Given a in Fpn , the ρi(a)’s are the orbit of a under the action of the automorphism group.
There is an obvious equivalence relation on the field for any elements which are pi powers of
one another. These equivalence classes partition the field, as is clear from the root chart.

Also we saw that apn
= a for all elements of Fpn , so as well apd

= a for all elements of Fpd .
This means that when we look at the Galois correspondence below, when we view Fpd as a
subfield of Fpn we will have ρd being an identity on the base field Fpd and we will expect

Gal(Fpn/Fpd) = 〈ρd〉; |ρd| = n/d

3That the ρi’s account for all automorphisms on Fpn is proved using Galois theory: the n distinct powers
of ρ are enough to fill the Galois group since [Fpn : Fp] = n.
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which will have group order n/d. E.g. the Galois group for F26 over F22 will consist of the
three automorphisms a 7→ a, a 7→ a4 and a 7→ a16.

5.4 Characteristic and minimal polynomials

The characteristic polynomial for an element a of a field F with respect to a base field
K is defined to be ∏

σ∈Gal(F/K)

x− σ(a)

which is clearly monic but not necessarily irreducible. For Fpn over Fp, this becomes

n−1∏
i=0

x− api

For our example F24 over F2, this is

(x− a)(x− a2)(x− a4)(x− a8)

The minimal polynomial of a is the unique monic irreducible polynomial having a as a
root. It is shown in field theory [4, Ch. 14.2] that the characteristic polynomial is a power
of the minimal polynomial, and in particular

Ca(x) = Ma(x)n/d

where d is the degree of the smallest extension field over the base containing a, which is the
same as the degree of a’s minimal polynomial. Since n/d is an integer, d always divides n.
That is, the minimal polynomial is like the characteristic polynomial, but we only include
distinct σ(a)’s.

In the root chart, this behavior is very clear:

• For the elements 0, 1 of F24 which are also elements of the base field F2, a2 = a so the
product

(x− a)(x− a2)(x− a4)(x− a8)

reduces to
(x− a)4

where the minimal polynomial is
(x− a)

which is of degree one (the 4 applications of the Frobenius map wrap around four
times), corresponding to the fact that 0 and 1 are elements of F2.
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• For the elements 110, 111 of F24 which are also elements of the intermediate field F22 ,
a4 = a so the product

(x− a)(x− a2)(x− a4)(x− a8)

reduces to
(x− a)2(x− a2)2

where the minimal polynomial is

(x− a)(x− a2)

which is of degree two (the 4 applications of the Frobenius map wrap around twice),
corresponding to the fact that 110 and 111 are elements of F22 but not elements of F2.

• For the remaining elements of F24 , the api
’s are all distinct so the product

(x− a)(x− a2)(x− a4)(x− a8)

does not reduce and the minimal polynomial is the same as the characteristic poly-
nomial, which is of degree four (the 4 applications of the Frobenius map do not wrap
around), corresponding to the fact that these elements of F24 are not elements of any
smaller field.

5.5 Conjugates

Two elements of the field are said to be conjugates if they are roots of the same minimal
polynomial, and clearly this also makes an equivalence relation on the elements of the field.
From the root chart we see a clear example that conjugacy classes are the same as Frobenius
orbits. For example, the polynomial r1 = x4 + x + 1, using r1 arithmetic, has roots u, u2,
u4 = u + 1, u8 = u2 + 1.

5.6 Orders and logs

In section 4.3 I showed the root chart for F24 . Here is the same chart, but instead of field
elements I show their logarithms. The polynomials r1(x) = x4 +x+1 and r2(x) = x4 +x3 +1
are primitive, so g1 = g2 = u = 10 can be used as a generator; r3(x) = x4 + x3 + x2 + x + 1
is imprimitive and I’ve selected g3 = u + 1 = 11 as a generator.
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Logarithmic root chart for x16 − x over F24

Irr. factors Roots mod Roots mod Roots mod Order
over F2 r1 = 10011 r2 = 11001 r3 = 11111

g1 = 0010 g2 = 0010 g3 = 0011

00010 N/A N/A N/A N/A
00011 0 0 0 1
00111 5 10 5 10 5 10 3

r1: 10011 1 2 4 8 7 14 13 11 7 14 13 11 15
r2: 11001 7 14 13 11 1 2 4 8 1 2 4 8 15
r3: 11111 3 6 12 9 3 6 12 9 3 6 12 9 5

Here the subfield/log criterion is clear: 1, which is in F2, is g15
i ; the other two non-zero

elements of F22 are g5
i and g10

i . All conjugates have a log which is some power of two times
the logs of the other conjugates.

Also, as Lidl and Niederreiter [10] point out, roots of r1 and r2 (which are primitive) have full
order, i.e. 15, regardless of which rj is used for the splitting arithmetic; roots of r3 (which is
imprimitive) have smaller order regardless of rj.

5.7 Two definitions of “generator”

In this paper, when I refer to a generator of Fpn , I refer to an element that “generates” the
multiplicative group F×

pn , i.e. an element which can produce all the other non-zero elements
only using multiplication. As well, I call such an element “primitive”.

I should come clean and admit that this terminology is non-standard (although multiple
authors use the term “primitive polynomial” in the sense I do). In field theory, it is common
to define the field “generated” by an element α to be the smallest field containing α, and to
say that α is a “primitive” element of a field F if it generates F in this sense. This simply
means that α is in F , but not in any proper subfield.

That is, when one talks of a field generated by α, one refers to all the elements which can
be obtained from α using multiplication and addition. Clearly, all you need to generate an
Fpn is any element with a degree-n minimal polynomial. Then, multiplication will give you
n distinct powers 1, α, α2, . . . , αn−1, and then addition will give you all the remaining pn

elements.

In the root chart above, it is clear that there are 12 elements which are field generators in
this sense: roots of the three quartics 10011, 11001 and 11111. However, only 8 of those 12
generate the multiplicative group using only multiplication.

My choice of using the terms “primitive” and “generator” in the group-theoretic sense rather
than in the field-theoretic sense is because logarithms are key throughout this paper, and in
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order to define logarithms one needs a generator of the multiplicative group.

5.8 The irreducible-count and primitive-count formu-

lae

Above I noted that there are formulae for the number of monic irreducibles of a given degree
in Fp[x], and for the number of those which are also primitive. The root chart makes the
derivations of those formulae obvious.

For the irreducible-count formula [4, Ch. 14.3]: When we factor xpn − x in Fp[x], the result
is all the monic irreducibles in Fp[x] of degree d for all d dividing n. Equating degrees, we
have that

pn =
∑
d|n

dI(d)

where I(d) is the number of monic irreducibles of degree d. E.g. in the root chart for F24 ,
I(1) = 2 (2 factors of egree 1), I(2) = 1 (1 factor of degree 2) and I(4) = 3 (3 factors of
degree 4), and 2 · 1 + 1 · 2 + 3 · 4 = 16. Take as given the Möbius inversion formula from
elementary number theory, and recall that µ(m), for integer m, is 0 if m is not squarefree,
+1 if m has an even number of distinct prime factors, or −1 if m has an odd number of
distinct prime factors. Note that we have a function of n (namely, pn) expressed in terms of
a sum over divisors of d of n (namely, dI(d)) so we may invert d and n to write

nI(n) =
∑
d|n

µ(d)pn/d

from which

I(n) =
1

n

∑
d|n

µ(d)pn/d

This function always has positive value, which then guarantees the existence of at least one
monic irreducible for any prime p and positive integer n.

For the primitive-count formula [11]: The multiplicative group of Fpn is cyclic with order
pn − 1. From elementary number theory we know that this cyclic group is generated by
elements whose logs are relatively prime to pn − 1. The number of such logs has a name:
the Euler totient function, or phi function. Thus there are φ(pn − 1) generators of the
multiplicative group of Fpn . Since they generate all of F×

pn , they can’t be elements of a
proper subfield so their minimal polynomials all have degree n. (In the logarithmic root
chart for F24 , the polynomials 10011 and 11001 are primitive since their roots have full order
15; 11111 is imprimitive since its roots only have order 5.) Also, if one of the roots of a
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polynomial is primitive, all of them are4. So the φ(pn − 1) generators are accounted for
by their φ(pn − 1)/n minimal polynomials, each of which is primitive. Like the primitive-
count function, this irreducible-count function always takes a positive value, guaranteeing
the existence of at least one primitive monic irreducible for any prime p and positive integer
n.

5.9 The Galois correspondence

We saw that the Galois group of Fpn is cyclic of order n, generated by the Frobenius auto-
morphism ρ. Also we just took a look at subfields. It is now natural to ask more about the
Galois correspondence for finite fields.

From the above discussions about subfields and Galois groups we have the following:

F24 = F2(γ), γ4 + γ + 1 = 0 = F2(α)(β)

F22 = F2(α), α2 + α + 1 = 0

F2

〈ρ4 = ι〉

〈ρ2〉

〈ρ〉

As mentioned above:

• The p-power map, ρ, is the identity on F2. The four maps ρ, ρ2, ρ4 and ρ16 = ι are
distinct automorphisms on F24 , forming the Galois group of F24 over F2.

• The p-power map, ρ, is the identity on F2. The two maps ρ and ρ2 = ι are distinct
automorphisms on F22 , forming the Galois group of F22 over F2.

• The p2-power map, ρ2, is the identity on F22 . The two maps ρ2 and ρ4 = ι are distinct
automorphisms on F22 , forming the Galois group of F24 over F22 .

4Given a ∈ Fpn , an arbitrary conjugate is api

for some integer i. If ak = 1 then (api

)k = akpi

= (ak)pi

= 1.
If ak 6= 1 then likewise (api

)k = (ak)pi

, and since raising to the pi power is an automorphism on Fpn , a non-1
element is not sent to 1. Therefore conjugates have the same multiplicative order.
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5.10 Field isomorphisms

Above we saw that in an automorphism, i.e. an isomorphism from a finite field to itself,
roots of a given minimal polynomial map to other roots of the same minimal polynomial.
Also, that mapping was α 7→ αpi

for some 0 ≤ i < n.

Also, above several times I mentioned that finite fields of a given order are isomorphic. But,
what is the nature of that isomorphism? It is one thing to prove the existence of something,
but it is another thing to produce that item. It can be shown that these isomorphisms can
be explicitly constructed as follows:

• A field homomorphism must be a group homomorphism on the additive group. In
particular, 0 maps to 0.

• A field homomorphism must be a group homomorphism on the multiplicative group as
well, and the multiplicative group is cyclic. Recall that for a homomorphism φ between
cyclic groups, it suffices to specify the image of a generator g. By the homomomorphism
property, for any a = gk in the first field, φ(a) = φ(gk) = φ(g)k in the second field.
(Not all the group homomorphisms will be field homomorphisms, of course — they all
preserve multiplication, but they won’t necessarily all preserve addition as well.)

• Since the multiplicative groups of both fields are cyclic, there is at least one primitive
element in the first field. Call that primitive element g1. Also it is clear that primi-
tive elements will have a minimal polynomial of degree n, not less, i.e. the minimal
polynomial for a primitive element is the same as its characteristic polynomial. This
is because a primitive element of the multiplicative group cannot be an element of a
multiplicative subgroup, so such an element can’t be belong to a subfield either.

• Find the minimal polynomial of the chosen generator in the first field.

• Map g1 to one of the n roots of that same minimal polynomial in the second field. It
can be shown that these roots are all primitive elements in the second field. Call your
choice g2.

• Zero maps to zero. All remaining elements a1 in the first field map to a2 in the second
field by

a2 = g
logg1 (a1)
2

For example, in the root chart, we can construct an isomorphism between the x4 + x + 1
field and the x4 + x3 + 1 field. Consult the log tables in appendix H.3 on page 99 to find a
generator for the x4 + x + 1 field, namely, 0010. Its minimal polynomial is in the left-hand
column, namely, x4 + x + 1. In the x4 + x3 + 1 field, x4 + x + 1 has roots 0110, 0111, 1100
and 1101 so there are four possible isomorphisms. I’ll arbitrarily choose the first. Remember
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that 0 maps to 0, and consult the log tables in appendix H.3 on page 99 to write down the
following:

x4 + x + 1: x4 + x3 + 1:
k gk φ(g)k

1 0010 0110
2 0100 1101
3 1000 0101
4 0011 0111
5 0110 1011
6 1100 1000
7 1011 0010
8 0101 1100
9 1010 0011

10 0111 1010
11 1110 1110
12 1111 1111
13 1101 1001
14 1001 0100
15 0001 0001

N/A 0000 0000

5.11 Embeddings and unembeddings

The above isomorphism works as well for embedding a smaller field in a larger one. Here,
we want to see not only that an Fpd is a subset of an Fpn , where d|n, but we also want to
see which element of the former maps to which element of the latter, in a way that preserves
addition and multiplication. Likewise, given an Fpd embedded inside an Fpn , it would be
nice to map those elements back to a standard Fpd , i.e. an Fpd defined by a degree-d monic
irreducible in Fp[x].

The technique is as follows.

• Find the minimal polynomial of an arbitrarily chosen generator gs in the smaller field,
the standard Fpd . This will be a degree-d monic irreducible in Fp[x].

• Factor the minimal polynomial in the larger field. (To do this, either construct or
consult a root chart, e.g. appendix G, or use a factorization algorithm, e.g. appendix
F.) Select one of the roots; call your choice gl. Note that this is not a generator of all
of Fpn , but rather only a generator of the subfield Fpd inside Fpn .

44



• To embed the smaller Fpd into the larger Fpn , zero maps to zero and all remaining
elements as in the smaller field map to al in the second field by

al = g
loggs (as)
l

• To unembed the copy of Fpd contained in the larger field Fpn , to a standard Fpd , zero
maps to zero and the remaining elements al in the larger field map to as in the second
field by

as = g
loggl

(al)
s

Note that this log will only be defined for those element of Fpn which are actually
elements of Fpd : this is another instance of the subfield/log criterion.

Let’s explicitly construct an isomorphism between F22 as defined by x2 + x + 1 and F22 as
a subfield of F24 with x4 + x + 1. We know that gs = u is a generator of the former, with
minimal polynomial x2 + x + 1. From the root chart, we know that x2 + x + 1 has roots
v2 + v and v2 + v + 1 in F24 . Select gl = v2 + v. Then:

x2 + x + 1: x4 + x + 1 subfield:
k gk

s gk
l

N/A 00 0000
1 10 0110
2 11 0111
3 01 0001

5.12 Composite fields

Using this technique it is easy to compute composites of finite fields. Given two fields of
degree n and m, let c be the least common multiple of n and m. Use the above formula
to map elements of Fpn into Fpc , and elements of Fpm into Fpc . Any irreducible degree-c
polynomial in Fp[x] may be used to define the Fpc arithmetic.

5.13 Algebraic closure of Fp

Above I used the example of x2 + 1 in R[x]. In this case, C is the splitting field for x2 + 1,
that is, C splits this particular polynomial. But moreover, C is the algebraic closure of R[x],
i.e. C splits all polynomials in R[x]. Furthermore, any polynomial in C[x] splits in C[x].

For finite fields, the situation is a little different: Fpn is the splitting field for any particular
irreducible degree-n polynomial in Fp[x] (in fact, for all degree-n irreducibles), but Fpn fails
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to split higher-degree polynomials with coefficients in Fp. Furthermore, Fpn does not split
all degree-n polynomials with coefficients in the extension field Fpn . It can be shown, in fact
[4, Ch. 14.3], that no finite field is algebraically closed, and that the algebraic closure of Fp,
written Fp, is the infinite field which is the union of Fpn for all integer n.

What does it mean to take such a union? This is the kind of thing we did in section 5.11,
where we embedded a smaller field in a larger one. Computation in Fp requires liberal
amounts of these kinds of embeddings.
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Chapter 6

Multiple extensions

Up to now in this document we’ve looked at single extensions, i.e. an Fpn = Fp(α) is an
extension field of Fp when α is a root of some degree-n monic irreducible polynomial in
Fp[x]. Here I want to consider multiple extensions: for example, let α again be a root of
some degree-n monic irreducible polynomial in Fp[x], and then let β be a root of some degree-
m monic irreducible polynomial in Fp(α)[y]. The result is an Fpnm which may be written as
Fp(α)(β).

The terms single extension and multiple extension are somewhat non-standard. In field
theory, it is shown that for so-called perfect fields, which includes all the finite fields, any
multiple extension F (α)(β) is simple if it can be written as F (γ) for some γ. For finite fields,
this is always the case — we can write all extensions thus. However, in this section I want to
consider the case when we choose not to do so. Why? Principally, to test our understanding
of Galois theory. In particular, I want to show how to compute in a multiple extension, and
to show how elements of an Fp(γ) line up with their counterparts in an Fp(α)(β).

6.1 Minimal polynomials over intermediate fields

Of course, we can think of F22 as an extension of F2, all by itself. This F22 is F2 adjoin α
where α is a root of x2 + x = 1. (Up to now I’ve been using u for the extension variable,
but now that I need more than one I’ll switch over to α, β and γ for this section and the
next.) This is a quadratic extension whose elements are linear combinations of 1 and α with
coefficients in the base field F2, i.e. elements are 0, 1, α, α + 1. As above, the Galois group
of this extension is {ι, ρ} and a2 = a for all a in the base field F2. The minimal polynomial
of α is

(x− α)(x− α2) = (x− α)(x− α− 1) = x2 + x + 1

using α2 + α + 1 arithmetic.
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Also we can think of F24 as an extension of F2: this F24 is F2 adjoin γ where γ is a root of
x4 +x+1. This is a quartic extension whose elements are linear combinations of 1, γ, γ2 and
γ3 with coefficients in the base field F2. The Galois group of this extension is {ι, ρ, ρ2, ρ3},
and a2 = a for all elements a of the base field. The minimal polynomial of γ is

(x− γ)(x− γ2)(x− γ4)(x− γ8) = (x− γ)(x− γ2)(x− γ − 1)(x− γ2 − 1) = x4 + x + 1

using γ4 + γ + 1 arithmetic.

Third, we’ve seen how F22 sits as a subfield of F24 : this F22 is {0, 1, γ2 + γ, γ2 + γ + 1} as
above (when γ was called u).

Now, how do we see F24 as an extension field not of F2 but rather of F22? If F22 = F2(α), then
we should be able to write F24 as F2(α)(β) for some β. This will be a quadratic extension
of F2(α) so elements of this F24 will be linear combinations of 1 and β with coefficients in
F2(α).

We lack the minimal polynomial of β. We need this to do arithmetic in F2(α)(β): otherwise
we can’t simplify powers of β, in the way that α2 + α + 1 = 0 allows us to simplify powers
of α. That is, we need Mβ(y) in order to write

F24 = F2(α)[y]/〈Mβ(y)〉

The Galois group of the extension F24/F22 is 〈ρ2〉 = {ι, ρ2}, since y4 = y on the base field
F22 .

We need to select a generator β of F24 . Since x4 + x + 1 is a primitive polynomial, γ is a
generator of F24 and we can use γ’s polynomial and say that β4+β+1 = 0. Then, consulting
the log table in appendix H.3 for multiplication, we have

Mβ(y) =
∏

σ∈Gal(F24/F22 )

(y − σ(β))

= (y − β)(y − β4)

= (y + β)(y + β4) since p = 2

= (y + 0010)(y + 0011)

= y2 + y + 0110

= y2 + y + β2 + β

To get this as a polynomial with coefficients in F22 , i.e. with coefficients in α rather than
in β, use the unembedding technique above and observe (perhaps from the root chart) that
β2 + β is an element of the F22 inside F24 . It is the 1st power of β2 + β, whose minimal
polynomial is y2 +y+1. Over the standard F22 , this factors as (y−α)(y−α−1). Arbitrarily
select the first root, α, and take its 1st power to write
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Mβ(y) = y2 + y + α

Was it just good fortune that the coefficient β2 + β was an element of F22 , allowing us to
replace it with an α? No; in fact, this is precisely what the Galois theory guarantees.

6.2 Double-compact notation

Now that we have this minimal polynomial for β, just as we used α2 + α + 1 = 0 to simplify
powers of α by α2 = α + 1, here also we can simplify powers of β by β2 = β + α. The
resulting log table, after some pencil-and-paper work which I’ve omitted, is as follows. First
I must introduce the double compact notation, of the form 11:10. The adjacent digits
are assumed to be in α, e.g. 11 = α + 1; the colon-delimited extended digits are in β, e.g.
1 : 1 = β + 1. So, 11:10 would be (α + 1)β + α = αβ + β + α.

k γk (compact) γk (full) βk (compact) βk (full)

1 0010 γ 01:00 β
2 0100 γ2 01:10 β + α
3 1000 γ3 11:10 (α + 1)β + α
4 0011 γ + 1 01:01 β + 1
5 0110 γ2 + γ 00:10 α
6 1100 γ3 + γ2 10:00 αβ
7 1011 γ3 + γ + 1 10:11 αβ + α + 1
8 0101 γ2 + 1 01:11 β + α + 1
9 1010 γ3 + γ 10:10 αβ + α

10 0111 γ2 + γ + 1 00:11 α + 1
11 1110 γ3 + γ2 + γ 11:00 (α + 1)β
12 1111 γ3 + γ2 + γ + 1 11:01 (α + 1)β + 1
13 1101 γ3 + γ2 + 1 10:01 αβ + 1
14 1001 γ3 + 1 11:11 (α + 1)β + α + 1
15 0001 1 00:01 1

6.3 Second example for intermediate fields

Throughout much of this paper I’ve used finite fields with p = 2, n = 4: these are small
enough that it’s easy to write down all the field elements, yet large enough that there is
some interesting behavior, namely, more than one monic irreducible (which doesn’t happen
e.g. with p = 2, n = 2), and an intermediate field (which doesn’t happen e.g. with any p for
n = 3).
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However, the p = 2, n = 4 case doesn’t give quite as interesting a subfield diagram as it
could. The next smallest more interesting case is p = 2, n = 6. Here I won’t write down
all the irreducibles: there are 9 of them, and I’ll choose x6 + x + 1 which happens to be
primitive1.

F26 = F2(α)(δ) = F2(β)(ε) = F2(γ), γ6 + γ + 1 = 0
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Here is a root chart for F26 , but displaying, for brevity, only roots mod the single monic
irreducible x6 + x + 1 rather than mod all the sextics. (For F24 , I tabulated roots mod all
the quartics.) Logarithms with respect to generator u = 000010 are displayed in parentheses
to the right of the field elements. This makes the root chart a log table as well (although
entries aren’t in a convenient order) so we can consult this for multiplication. Also I include
root charts for the standard subfields F23 and F22 .

Root chart for 1000011, g = 000010

Linears

0000010: 000000( -)

0000011: 000001( 0)

Quadratic

0000111: 111011(21) 111010(42)

Cubics

0001011: 001110(27) 010111(54) 011001(45)

0001101: 011000( 9) 001111(18) 010110(36)

Sextics

1000011: 000010( 1) 000100( 2) 010000( 4) 001100( 8) 010011(16) 001001(32)

1001001: 000110( 7) 010100(14) 011100(28) 011111(56) 011010(49) 001011(35)

1010111: 001000( 3) 000011( 6) 000101(12) 010001(24) 001101(48) 010010(33)

1011011: 001010(13) 000111(26) 010101(52) 011101(41) 011110(19) 011011(38)

1You might suspect a pattern here: x2 + x + 1, x3 + x + 1, x4 + x + 1 and x6 + x + 1 are all irreducible
and primitive in F2[x]. But don’t be fooled: it is not the case that xn + x + 1 is irreducible for all n, let
alone primitive.
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1100001: 100101(31) 100001(62) 110001(61) 111101(59) 101110(55) 100111(47)

1100111: 100000( 5) 110000(10) 111100(20) 101111(40) 100110(17) 100100(34)

1101101: 100011(11) 110101(22) 101101(44) 100010(25) 110100(50) 101100(37)

1110011: 101001(23) 110010(46) 111000(29) 111111(58) 101010(53) 110111(43)

1110101: 101000(15) 110011(30) 111001(60) 111110(57) 101011(51) 110110(39)

Observe again the subfield/log criterion: the roots of the linears and the quadratic have logs
divisible by 21 = (26− 1)/(22− 1); the roots of the linears and the cubics have logs divisible
by 9 = (26 − 1)/(23 − 1).

Root chart for 1011, g = 010

Linears

0010: 000(-)

0011: 001(0)

Cubics

1011: 010(1) 100(2) 110(4)

1101: 011(3) 101(6) 111(5)

Root chart for 111, g = 10

Linears

010: 00(-)

011: 01(0)

Quadratic

111: 10(1) 11(2)

F22 is an extension of F2. Likewise, F23 is an extension of F2. Also we can think of F26

as an extension of F2: this F26 is F2 adjoin γ where γ is a root of x6 + x + 1. (In the
root chart, γ appears as 000010.) F26 is a sextic extension of F2 whose elements are linear
combinations of 1, γ, γ2, γ3, γ4 and γ5 with coefficients in the base field F2. The Galois
group of this extension is {ι, ρ, ρ2, ρ3, ρ4, ρ5} and a2 = a for all a in the base field F2. The
minimal polynomial of γ is

(x− γ)(x− γ2)(x− γ4)(x− γ8)(x− γ16)(x− γ32)

= (x + 000010)(x + 000100)(x + 010000)(x + 001100)(x + 010011)(x + 001001)

= x6 + x + 1

using γ6 + γ + 1 arithmetic.

Now, how do we see F26 as an extension field not of F2 but rather of F22 and F23? We should
be able to write F26 as F2(α)(δ) for some δ. This will be a cubic extension of F2(α) so elements
of this F26 will be linear combinations of 1, δ and δ2 with coefficients in F2(α). Likewise,
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we should be able to write F26 as F2(β)(ε) for some ε. This will be a quadratic extension
of F2(β) so elements of this F26 will be linear combinations of 1 and ε with coefficients in
F2(β).

We lack the minimal polynomials of δ and ε. We need them to simplify powers of δ and ε
so we can do arithmetic in

F26 = F2(α)[y]/〈Mδ(y)〉
and

F26 = F2(β)[y]/〈Mε(y)〉

The Galois group of F2(α)(δ) over F2(α) is 〈ρ2〉 = {ι, ρ2, ρ4}, since a4 = a fixes the base field
F22 . Likewise, the Galois group of F2(β)(ε) over F2(β) is 〈ρ3〉 = {ι, ρ3}, since a8 = a fixes
the base field F23 .

To find the minimal polynomials of δ and ε, obtain a generator of the F26 defined by γ.
Since x6 + x = 1 is a primitive polynomial, γ generates the multiplicative group. Again
we appropriate γ’s polynomial for δ and ε, so δ6 + δ + 1 = 0 and ε6 + ε + 1 = 0. Since
the Galois groups of F26/F22 and F26/F23 are 〈ρ2〉 and 〈ρ3〉, respectively, by definition the
minimal polynomials are

Mδ(y) = (y − δ)(y − δ4)(y − δ16)

Mε(y) = (y − ε)(y − ε8)

Using the logarithms included in the F26 root chart for multiplication, the former simplifies
to

Mδ(y) = (y − δ)(y − δ4)(y − δ16)

= (y + δ)(y + δ4)(y + δ16)

= (y + 000010)(y + 010000)(y + 010011)

= (y + 000010)(y2 + 000011y + 111100)

= y3 + y2 + 111010y + 111011

With reference to the root chart for F26 , 111010 is δ42 and 111011 is δ21 = (δ21)2. These are
roots of x2 + x + 1 in F26 , which from the root chart for F22 has corresponding roots α and
α + 1. Thus, using the unembedding δ42 7→ α,

Mδ(y) = y3 + y2 + αy + α + 1

Likewise,

Mε(y) = (y − ε)(y − ε8)

= (y + ε)(y + ε8)

= (y + 000010)(y + 001100)

= y2 + 001110y + 011100
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With reference to the root chart for F26 , 001110 is ε27 and 011000 is ε9. The former, ε27, is a
root of x3 + x + 1 in F26 , which from the root chart for F23 has a corresponding root β. The
other coefficient, ε9, is (ε27)5 which maps to β5 = β2 + β + 1. Thus, using the unembedding
ε27 7→ β,

Mε(y) = y2 + βy + β2 + β + 1

As a sanity check, one can verify by factorization (e.g. appendix F) that these two minimal
polynomials are irreducible over their respective base fields and have δ and ε, respectively,
as roots.

(Also note that one can obtain the minimal polynomials Mδ and Mε by factoring y6+y+1 over
F22 and F23 , respectively, and selecting in each case the factors of which δ and ε, respectively,
are roots. I’ve not pursued that method in this paper since it is more time-consuming on
paper.)

Now that the minimal polynomials have been obtained, we can write a log table as above.
Since there are 64 field elements, I’ll show only a few rows.

k δk (compact) εk (compact) γk (compact)
1 01:00 001:000 000010
2 01:00:00 010:111 000100
3 01:10:11 011:101 001000
4 11:01:11 011:010 010000
5 10:10:10 100:010 100000
6 01:01 001:001 000011
7 01:01:00 011:111 000110
8 10:11 001:010 001100
9 10:11:00 111 011000
...

...
...

...
21 11 101:100 111011

...
...

...
...

27 11:11 010 001110
...

...
...

...
42 10 101:101 111010

...
...

...
...

61 01:11:00 111:001 110001
62 10:10:11 100:011 100001
63 01 001 000001
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Part III

Linear feedback shift registers
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Chapter 7

LFSRs and linear transformations

Linear feedback shift registers are perhaps the single most important application of finite
fields. In this chapter we’ll see what they are, look at several different configurations, and
discover that they are all special cases of a general situation.

The standard reference for LFSRs is Golomb [5]. Also see Lidl and Niederreiter [10], and in
Schneier [13]. At the same time, this chapter serves to clarify some concepts as presented in
Schneier [13].

7.1 Homogeneous linear recurrence relations

Anyone who has taken discrete mathematics is familiar with recurrence relations. Often, the
first example presented is the Fibonacci sequence, given by

s0 = 0

s1 = 1

sk+2 = sk+1 + sk, k = 0, 1, 2, . . .

By applying these rules we get the sequence 0, 1, 1, 2, 3, 5, 8, etc.

The idea is to define a sequence (of integers, reals, finite-field elements, etc.) in terms of
previous elements. Terminology:

• If the value of an element is a function of the n values before it (n = 2 for the Fibonacci
sequence), then we say we have an nth-order recurrence relation.
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• This function may be called the recurrence rule, since it’s the rule which tells us
how to produce the next element of the sequence.

• For an nth-order recurrence relation, to avoid indexing into negative k values where
the sequence is undefined, we require n initial conditions, s0 through sn−1 — in this
example, s0 = 0 and s1 = 1. It’s important to note that the initial conditions are part
of what defines the sequence — if you use the Fibonacci sequence’s recurrence rule but
use different initial conditions, that’s not the Fibonnaci sequence.

• If the recurrence rule is a linear function (as is the case for the Fibonacci sequence;
sk = s2

k−1 would be a non-linear 1st-order recurrence relation on the integers1), then
we say we have a linear recurrence relation.

• If there is a constant term in the recurrence rule, e.g. sk = sk−2 + sk−1 + 3, then we
say we have an inhomogeneous linear recurrence relation; otherwise we say we
have a homogeneous linear recurrence relation.

In this paper I’ll confine myself to homogeneous linear recurrence relations. In general, we
have

sk+n = cn−1sk+n−1 + cn−2sk+n−2 + . . . + c1sk+1 + c0sk

=
n−1∑
i=0

cisk+i

7.2 Matrices for homogeneous linear recurrence rela-

tions

We can define recurrence relations over any ring, group, etc. — any set of elements with at
least one mathematical operation. Here we’ll look specifically at recurrence relations over
the field Fq = Fpn .

Here is an example, a 4th-order homogeneous linear recurrence relation, taken over F2:

sk+4 = sk−3 + sk−4

Now, thinking ahead to where I’m going, I can write a state vector

sk = (sk+3, sk+2, sk+1, sk)
t

1Although it would be linear over F2, since a2 = a for all a in F2.

56



with the obvious generalization to nth-order recurrence relations. The kth state vector, sk,
consists simply of the n values needed to produce the next element of the sequence. Given
that, I can write the following matrix equation to get the next state vector:


sk+4

sk+3

sk+2

sk+1

 =


0 0 1 1
1 0 0 0
0 1 0 0
0 0 1 0

 ·


sk+3

sk+2

sk+1

sk


If you write out the matrix multiplication, all this says is that

sk+4 = sk+1 + sk

which is true, along with

sk+3 = sk+3, sk+2 = sk+2, sk+1 = sk+1

which are undeniable. Writing the above matrix as T , I have

sk+1 = T sk

As you can easily see, given an nth-order linear recurrence relation

sk+n = cn−1sk+n−1 + cn−2sk+n−2 + . . . + c1sk+1 + c0sk

the T matrix will be 
cn−1 cn−2 · · · c1 c0

1 0 0 0
0 1 0 0
...

. . .

0 0 1 0


Why would I write such a matrix equation? Because we now have a linear transformation
from the n-dimensional vector space (Fq)

n to itself. And quite a bit is known about linear
transformations.

7.3 Registers

When you’re standing on the ground watching a train go by, of course the ground is mo-
tionless while the train whizzes past you. But if you’re on the train, it seems to stay still
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while the ground rushes past in the other direction. Looking at a recurrence relation is
like watching a train: we stand on the integers while the recurrence relation chugs out one
sequence element after another. Looking at the state vectors is like being on the train: we
keep the n previous values next to us, and they burble and change while the subscripts rush
along underneath.

In electronic circuits, which is where this all started (see also [2]), the cars in the train are
called a register. Let’s take another look at that matrix multiplication, which transforms
a state vector at one time tick into the state vector at the next time tick. Let := stand for
assignment. Letting the train stand still, I’ll let v0 through vn−1 stand for the values in the
register at a given time step.

We have

v3 := v1 + v0

v2 := v3

v1 := v2

v0 := v1

or (please pardon the corny ASCII graphics):

o-------------o-(+)--o

| | |

| ^ ^

v | |

o------o------o--|---o--|---o

| v3 --> v2 --> v1 --> v0 | ---> output

o------o------o------o------o

The term linear feedback shift register is very clear here: bits in the register are shifted one
position to the right at each time step; the vacancy at the left is filled by values fed back
into the register, using a linear function.

The entire contents of the register (the state vector) is the internal state, namely, all the
n history values needed for the recurrence relation, but only the shifted-out value is the
output. Mathematically, the state is in (Fq)

n but the output is in Fq. In particular, for this
example where q = 2, we get only one output bit per time tick. We’ll discuss below what to
do about this.

7.4 Periodicity of recurrence relations over Fq

Suppose you have a function f from a finite set S to itself, then iterate that function. E.g.
given s in S, compute f(s), then f(f(s)), etc. Since there are only finitely many elements in
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the set, you can’t keep getting different iterates2, so some jth iterate will be equal to some
ith iterate. At that point, the function will necessarily start to repeat.

Now, the first few values don’t ever have to appear again. For example, square an odd
integer mod 10. Say you start with 3; its square mod 10 is 9, whose square is 1, and all
subsequent squares are 1. I.e. you get the sequence 3, 9, 1, 1, 1, . . .. The 3 and the 9 don’t
ever reappear, but the sequence is ultimately periodic with period 1. By analogy with
the shape of the Greek letter ρ, we sometimes call the start-up phase (e.g. 3, 9) the tail and
the periodic phase (e.g. 1, 1, 1, . . . ) the loop or the cycle.

Now, our linear transformations (the non-linear ones too, for that matter) are functions from
the finite set (Fq)

n to itself, so LFSRs always repeat. In engineering practice, one typically
wants:

• The longest possible period, or maximal period, for a given amount of history (i.e.
n).

• The maximal number of states reachable from any other, i.e. we should be able to run
through as many of the possible states as we can;

• The minimal number of lock-up states, i.e. state vectors that map to themselves.

We’ll see below how easy these goals are to achieve, using some of the finite-field techniques
from earlier in this paper. (To avoid being coy, I’ll say that the zero vector will be a lock-up
state, but we’ll always, for any q and n, be able to construct an LFSR of period qn−1 which
cycles through all of the qn − 1 non-zero states, regardless of initial state.) But first, I want
to look at a slightly different LFSR.

7.5 Powers of u revisited

Let’s take another look at the RER method for multiplying by u, as described in section
3.8. Suppose for the sake of example that we’re working in F24 , with an arbitrary finite-field
element which is

a3u
3 + a2u

2 + a1u + a0

and suppose the polynomial r(x) which we use to define our finite-field arithmetic is

x4 + x + 1

When we multiply by u, we get

a3u
4 + a2u

3 + a1u
2 + a0u

2Computer scientists call this the pigeonhole principle.
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But we want to reduce mod r. Since u4 = −u− 1, we get

a2u
3 + a1u

2 + (a0 − a3)u− a3

Graphically,

a3 a2 a1 a0 Input
a3 a2 a1 a0 0 Multiplied by u

a2 a1 a0 − a3 −a3 Reduced mod r, using RER

That is, letting b’s represent the coefficients of u · a,

b3 = a2

b2 = a1

b1 = a0 − a3

b0 = −a3

Now, this can be represented by a matrix (as you might expect, since multiplication by u
is certainly a linear transformation on Fpn). Recalling that plus is the same as minus when
p = 2, we have 

b3

b2

b1

b0

 =


0 1 0 0
0 0 1 0
1 0 0 1
1 0 0 0

 ·


a3

a2

a1

a0


In the general case, it’s easy to see that if

r(x) = xn + rn−1x
n−1 + rn−2x

n−2 + . . . + r1x + r0

then the multiply-by-u matrix looks like
−rn−1 1 0 0 0
−rn−2 0 1 0 0
...

. . .

−r1 0 0 0 1
−r0 0 0 0 0


We could implement an LFSR as follows: Again let v’s stand for register values, and let

v3 := v2

v2 := v1

v1 := v0 − v3

v0 := −v3

It would look like this:
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o-------------o------o

| | |

^ v v

| | |

o--|---o------o-(+)--o-(+)--o

| v3 <-- v2 <-- v1 <-- v0 |

o------o------o------o------o

That is, it looks just like the previous LFSR, except with the arrows reversed.

7.6 LFSR configurations

Now we have two ways to form LFSRs. In the first case, we started with a recurrence relation
over Fq, then created vectors over (Fq)

n. In the second case, we looked at arithmetic in Fqn ,
which we can view as a vector space (Fq)

n over Fq.

The first LFSR we looked at arose naturally from recurrence relations such as the Fibonacci
sequence. This LFSR is called a Fibonacci configuration. The second LFSR we looked at
arose naturally from multiplication in a finite, or Galois, field. This LFSR is called a Galois
configuration. (To be quite picky, Galois-configuration LFSRs are typically presented as
a left-to-right mirror image of what I’ve shown here, so I should say I’m using a reflected
Galois configuration.)

xxx different functions, different internal state – but same *output*?!?

7.7 Companion matrices

xxx note that LFSRs can be defined over Fq, where (practically) q is a power of 2. mention
TSRs just for fun ... ref to Tsaban and Vishne “very readable paper”.

xxx no crappy line breaks in ASCII art!
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Part IV

Software implementation
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Chapter 8

Computing with finite fields in GP

If you haven’t guessed by now, even though all the methods presented in this paper can be
done by hand, it quickly gets tedious even with the assistance of tables. It can become more
entertaining, however, if you let a machine do the repetitive work (but only after you also
know how to do it yourself, with the machine turned off!). The computational algebraic
number theory package GP [6] can be used to compute in finite fields. Also, of course, you
can use Mathematica, Maple, GAP and probably several other packages. Here I’ll talk about
GP. In chapter 9 I’ll discuss implementation of p = 2 in software, since that is an important
special case.

Going the other way, if you’re looking at an implementation of a finite-field algorithm written
by someone else — whether in C or assembler (software), Verilog or VHDL (hardware), etc.
— the implemenation may look not at all familiar. Chapter 9 will explain some of those
snippets of C code.

8.1 Fp in GP

As described in 3.5 on page 22, we use the equivalence Fp[x]/〈r(x)〉 ∼= Fp(u). Throughout
this paper I’ve used the latter; GP uses the former. I’ll show how to convert notations using
GP.

Modular arithmetic (modulo integers or polynomials) is implemented in GP using Mod. The
first argument is a ring element; the second is a modulus. The result is the canonical
representative of the equivalence class of the first argument mod the second. Use lift to
lift back to the containing ring.

? a=Mod(2,11);
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? a

%1 = Mod(2, 11)

? lift(a)

%2 = 2

? lift(a^4)

%3 = 5

? lift(a^5)

%4 = 10

? lift(a^10)

%5 = 1

? lift(1/a)

%6 = 6

? lift(a^-6)

%7 = 5

8.2 Fpn in GP

Specify the polynomial r(x) in Fp[x] which will be used to define the finite-field arithmetic.
Multiply by Mod(1,p) to apply the ring homomorphism from Z[x] to Fp[x], or use Mod on
each coefficient to write the polynomial directly in Fp[x]. Then use lift to remove clutter
for printing.

? rpoly = (x^6 + x + 1) * Mod(1,2);

\\ Could also write: rpoly = Mod(1,2) * x^6 + Mod(1,2) * x + Mod(1,2)

? polisirreducible(rpoly)

%1 = 1

? rpoly

%2 = Mod(1, 2)*x^6 + Mod(1, 2)*x + Mod(1, 2)

? lift(rpoly)

%3 = x^6 + x + 1
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Next, create an element of the finite field as follows: use Mod again to signify reduction mod
r. Use lift twice for printing: once to get past the polynomial mod, and again to lift the
coefficients. Then use subst to convert to u notation. (This is not only due to personal
preference: it also makes the output much easier to read.)

? a = Mod(Mod(1,2)*x^3+x, rpoly)

%4 = Mod(Mod(1, 2)*x^3 + Mod(1, 2)*x, Mod(1, 2)*x^6 + Mod(1, 2)*x + Mod(1, 2))

? uprint(f) = subst(lift(lift(f)), x, u);

? uprint(a)

%5 = u^3 + u

? uprint(a^2)

%6 = u^2 + u + 1

? uprint(a^3)

%7 = u^5 + u^4 + u^2 + u

? uprint(1/a)

%8 = u^5 + u^4 + u^2

? uprint(a^63)

%9 = 1

8.3 Multiple extensions in GP

Note: The presentation in this section uses the notation of section 6.3 on page 49.

To review, we have the following sequence of rings and fields when we construct a multiple
extension:

• The integer ring Z

• The field Fp = Z/〈p〉

• The polynomial ring Fp[x]

• The field Fp[x]/〈r1(x)〉 = Fp(α) where α is a root of r1(x)

• The polynomial ring Fp(α)[y]
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• The field Fp(α)[y]/〈r2(y)〉 = Fp(α)(β) where β is a root of r2(y)

A mod operation is used each time we pass from a ring to a field, where the modulus is
irreducible (e.g. p, r1(x), r2(y)). Thus, for double extensions there will be three mods.

Also note that GP (as of this writing, namely, version 2.2.6) does not implement multivariate
polynomials per se, of the form F [x, y]. Rather, it implements them in the form F [x][y]:
polynomials with coefficients in y, whose coefficients are polynomials in x. To tell GP which
variable comes first, type e.g. x;y;. or y;x;. (However, GP always defines x as a variable
at startup.)

d;a; \\ delta and alpha

e;b; \\ epsilon and beta

c; \\ gamma

p = 2;

\\ This is the F_{2^6} defined by gamma, with a generator.

rc = Mod(1, p) * (c^6 + c + 1);

gc = Mod(c, rc);

\\ This is the F_{2^6} defined by alpha and delta, with a generator.

ra = Mod(1, p) * (a^2 + a + 1);

rb = Mod(a, ra) * (d^3 + d^2 + a*d + a+1);

gd = Mod(d, rb);

\\ This is the F_{2^6} defined by beta and epsilon, with a generator.

rb = Mod(1, p) * (b^3 + b + 1);

re = Mod(b, rb) * (e^2 + b*e + b^2+b+1);

ge = Mod(e, re);

for (i=0,63,print(i, " ", lift(lift(lift(gc^i)))))

print("");

for (i=0,63,print(i, " ", lift(lift(lift(gd^i)))))

print("");

for (i=0,63,print(i, " ", lift(lift(lift(ge^i)))))

Partial output:

0 1

1 c
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2 c^2

3 c^3

...

61 c^5 + c^4 + 1

62 c^5 + 1

63 1

0 1

1 d

2 d^2

3 d^2 + a*d + (a + 1)

...

61 d^2 + (a + 1)*d

62 a*d^2 + a*d + (a + 1)

63 1

0 1

1 e

2 b*e + (b^2 + b + 1)

3 (b + 1)*e + (b^2 + 1)

...

61 (b^2 + b + 1)*e + 1

62 b^2*e + (b + 1)

63 1
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Chapter 9

p = 2 in C

A main purpose of this paper is to connect mathematical theory of finite fields with engi-
neering practice. Sometimes we use software to automate tasks which we find repetitive.
Computer algebra systems, such as GP, do well at this for general Fpn . However, we can do
further optimizations in the p = 2 case, since operations may be done in binary and may
take advantage of some hardware parallelism (as we’ll see below). For this reason, the p = 2
case is the most important in applications (e.g. cryptography and error correction).

Finite-field algorithms can implemented in software (say in C or assembler) or in electronic
circuitry (e.g. in Verilog, VHDL or Handel-C). It can be disconcerting to see these low-
level bit operations and not have any idea of how it relates to the mathematical theory.
This section is a little different from the GP section: when I discussed GP, I talked about
what you can do to implement finite-field arithmetic. For this section, I want to talk not
only about how you can implement finite-field arithmetic, but also about how other people
implement it. In particular, I want explain some commonly encountered paradigms, in order
to shed some light on some of those mysterious circuit diagrams and snippets of C code you
see in the literature or on the job.

Of course, syntaxes and applications vary between programming languages, but regardless
of the implementation, you will see the same kinds of XOR and shift operations. I’ll choose
to give my examples in C: C is a common implementation language, it is (mostly) processor
independent, and (unlike hardware design languages) it is easy to experiment with, without
needing special hardware or tools. I’ll assume you are able to compile and run a hello-world
program in C, that you can use the basic I/O facilities of the stdio library, that you can
write and call a function, etc. However, I won’t assume you’re a C guru, and in particular I
will not assume knowledge of machine arithmetic.
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9.1 Hexadecimal notation

First of all, we need to get familiar with hexadecimal notation. The Verilog and VHDL
languages let you type your values in binary, if you wish. C does not, so you need to know
hex to be able to write C code. Also, hexadecimal is the notation of choice (even outside of
C), so you need to know hex to be able to read the C code as well.

Hexadecimal notation is simply base-16 arithmetic. The first 10 digits are 0-9; the remaining
6 (corresponding to 10-15) are a-f1. We use the 0x prefix2 to indicate hexadecimal values,
e.g. 0x13 in hex is 19 in decimal.

The nice thing about base 16 is that every hex digit (or nybble) corresponds to 4 bits3. Thus
it is easy to translate back and forth between binary and hex. Furthermore, this enables a
compact notation which makes numbers easier to remember4. For example, is it easier to
remember this:

100000100110000010001110110110111

or this:
0x104c11db7?

Personally, I’d choose the latter.

Here is a table. If you’re going to be implementing bit-manipulation algorithms, it would be
best to know it by heart.

1Or, A-F depending on personal preference. C compilers accept both.
2This is the convention in C. In some assemblers, and in much literature from the Intel corporation, you’ll

see e.g. 23h in place of 0x23. Some other assemblers use a dollar sign, e.g. $23.
3Octal, or base 8, was common up through the 1970s or so. Each octal digit, 0-7, represents 3 bits. A

word size of 36 bits was common on older IBM mainframes, and 3 goes evenly into 36. Today, processor
word sizes are always a power of two, e.g. 8, 16, 32 or 64 bits, and bytes are always 8 bits, so base 16 is
more natural.

4Also enabling engineers to invent creative test patterns for software and hardware designs, e.g. 0xdead-
beef, 0xbadd1dea, 0xdeaddadd8badf00d, etc. etc.
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Hex Decimal Binary
0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
a 10 1010
b 11 1011
c 12 1100
d 13 1101
e 14 1110
f 15 1111

When you see multi-digit hexadecimal numbers, simply translate them one nybble at a time.
E.g. 0x14e becomes 0001 0100 1110. Likewise, convert from binary to hex four bits at a
time, but be sure to group into foursomes starting from the right. E.g. 0101101 is 010 1101
which is 0x2d.

(To convert back and forth between binary and decimal, or between hex and decimal, is not
as straightforward. Use a pencil and paper, use a scientific calculator, or do it in your head.
For this document, we won’t need to convert between hex and decimal notation so it’s a
non-issue.)

9.2 I/O

When you type in a literal in your C code, you must prefix it with 0x so the compiler can
distinguish it from decimal. For example:

unsigned x = 0x13;

When you read in a string or a file, you can omit the 0x prefix if your code is expecting
hexadecimal input: the scanf (scan standard input), sscanf (scan a string) and fscanf

(scan from a file stream) functions use %x to specify hex input. For example:

char * string = "13";

unsigned x;
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...

if (sscanf(string, "%x", &x) != 1)

printf("Couldn’t scan input \"%s\" as hex.\n", string);

When you print a hex value, again use %x. Additionally, use a preceding digit to indicate
field width (e.g. if you are printing columnar data which you want to align nicely), and
optionally precede that with a zero to indicate zero fill. For example:

unsigned a = 0x2, r = 0x13;

printf("<<%x>> <<%x>>\n", a, r); Results in <<2>> <<13>>

printf("<<%4x>> <<%4x>>\n", a, r); Results in << 2>> << 13>>

printf("<<%04x>> <<%04x>>\n", a, r); Results in <<0002>> <<0013>>

9.3 Word sizes

Back in the day when C was invented, it was considered important that the size of C’s
integral types not need to be the same everywhere, but rather match a given processor’s
word size. Decades later, that opinion is not always held. Nonetheless, while the ANSI C
specification says that a char shall be one byte (always), for the rest it only requires that
sizeof(short) ≤ sizeof(int) ≤ sizeof(long).

Having said that, I can also say that the following is true:

• For every machine I’ve worked on in the last decade, a short is 2 bytes and an int is
4.

• For Windows 3.1 and earlier, an int was 2 bytes. But Windows 3.1 is fast becoming
history. For Windows 9x and above, an int is 4 bytes.

• For any 32-bit Unix or Linux system, an int is 4 bytes.

• A long is usually 4 bytes, with the exception of some 64-bit systems where it may be
8 bytes.

• The long long type is not standard, but is very common and is typically implemented
by the GNU C compiler (GCC). When present, it is always (in my experience) 8 bytes.

• The sizeof operator will always tell you the sizes of the various data types for your
system.

What this means is that in most of the previous decade, and in the current decade, on
everyday PC and workstation hardware (which nowadays typically have 32-bit processors),
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an int is 4 bytes. I tell you this not to encourage sloppiness, but rather to clue you to some
of the assumptions you will see other people make.

If you are writing code on a system for which you know the data sizes used by your compiler,
you may wish to simply use unsigned for your polynomials. (This is shorthand for unsigned
int; signed vs. unsigned will be explained below). If you wish to write portable code (e.g.
something your peers can safely use on their Alphas or Sparc 64’s, something which you
can safely re-use on your next project 5 years from now, something which won’t break when
you port it from your 32-bit PC test environment to the 8-bit embedded processor on your
production system, etc.), your best bet is to make a header file something like the following:

// This file is named mytypes.h

#ifndef MYTYPES_H

#define MYTYPES_H // Protect against multiple inclusions

typedef unsigned char int8u;

typedef char int8s;

typedef unsigned short int16u;

typedef short int16s;

typedef unsigned int int32u;

typedef int int32s;

typedef unsigned long long int64u;

typedef long long int64s;

#endif // MYTYPES_H

Then, (a) include this header file in all your sources, using #include "mytypes.h"; (b)
always use int32u etc. instead of plain C types; (c) when you port your code to some other
environment, you’ll only need to change that one header file.

In this document, I’ll always use unsigned.

A final note about the longer and shorter data sizes: compilers do take care of them for you.
A common misconception among hardware folks is that processors can only load and store
in multiples of their word size, where the word size is defined to be the number of bits in
CPU registers. This is simply not true. A 32-bit general-purpose processor has 8-bit, 16-bit
and 32-bit load and store operations. A 16-bit processor has 8-bit and 16-bit load and store
operations. A 64-bit processor has 8-, 16-, 32- and 64-bit load and store operations. For
data types larger than the processor’s word size, the compiler will issue as many load/store
operations as necessary. E.g. if you have a 32-bit processor, you can use 64-bit long long

values and rest assured that the compiler will generate a pair of 32-bit load operations to read
one of these variables from memory, and a pair of 32-bit store operations to write them to
memory. Likewise, the compiler will take care of the carry-ins and carry-outs across machine
words needed to add, subtract, multiply and divide data types longer than the CPU word
size (e.g. 32-bit long on a 16-bit processor, or 64-bit long long on a 32-bit processor).
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9.4 Signed vs. unsigned

Unlike Java and Fortran, the C language provides signed and unsigned versions of integer
types. Addition and subtraction produce the same results, bit for bit, regardless of signed-
ness. The key differences in arithmetic are (1) integer division and (2) right-shift operations.
The details of both, and twos’ complement arithmetic in general, are simple enough but are
beyond the scope of this paper (see e.g. the excellent treatment in chapter 4 of Hennessy
and Patterson [8]). For the current discussion, in which we will do mainly bitwise operations
and left shifts, the difference is not too important. Nonetheless, I’ll use unsigned arithmetic.

9.5 Representation of integers

As mentioned above, the C language provides several integral types. For the sake of discus-
sion, I’ll assume 32-bit words and use type unsigned. The zero integer is represented with
all bits zero, i.e. 0x00000000. The value 1 is 0x00000001, where the right-hand side5 is the
least significant bit. The left-hand side is the most significant bit. We count in the
obvious way in base two.

Notice that 32-bit unsigned integers thus have a range from 0 to 232 − 1 = 4, 294, 967, 295;
16-bit unsigned integers range from 0 to 216−1 = 65, 535; 8-bit unsigned integers range from
0 to 28 − 1 = 255.

9.6 Integer arithmetic

There’s a lot to say about computer integer arithmetic, most of it not relevant to us (again,
see chapter 4 of Hennessey and Patterson [8] for complete information). However, I do want
to point out, for use below, what addition looks like. Suppose you want to add 13 and 14.
In binary, these are 1101 and 1110. The addition looks like:

1101

+ 1110

------

11011

which is 27 in decimal and checks out. Note in particular how you do this: just as in
elementary school (but now with base 2, not base 10), add columns from right to left,

5We write it this way regardless of the CPU’s byte endianness, i.e. byte order within larger integral types.
Nothing being discussed in this paper is endianness-dependent.
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carrying out and carrying in if necessary. Note in particular that a given bit in the output
can depend on all the input bits above and to the right.

I won’t discuss machine arithmetic for subtraction, multiplication and division, although you
can probably guess that they can be implemented using elementary-school methods. How-
ever, I will point out the following properties of integer arithmetic in C, some of which often
come as a surprise to engineers, and at least one of which is distasteful to mathematicians:

• All arithmetic is performed modulo 2n where n is the number of bits of the data type
being operated on6, i.e. 8, 16, 32 or 64.

For addition, this may not be too much of a surprise. However, when you multiply
two n-bit integers, the full product can be as much as 2n bits. Moreover, some CPU
architectures (e.g. MIPS) provide an instruction which takes two 32-bit operands and
produces a 64-bit product. This is accessible from MIPS assembler, but not directly
from C. Hardware people are often surprised by this discarding of data.

Most importantly, C provides absolutely no automatic exception handling for overflow
cases (although CPUs generally do raise an exception at the hardware level when a
divide by zero is attempted). If you are concerned about integer overflow, you must
check for it7.

• Division of two integers produces another integer, not a rational or a float. Using
Euclid’s algorithm, given a and b we write a = qb + r. The C statement q = a / b

produces precisely that quotient; the C statement r = a % b produces the remainder.
(C does not provide rational arithmetic, although you can easily implement your own
rational data structure and corresponding functions. And if you want a floating-point
quotient, unlike in Perl, you must first cast to float or double.)

For example, in C, 7/2 is 3.

• Using Euclid’s division algorithm, we generally take 0 ≤ r < b. However, C’s mod
operator does not do this. If a < 0, then r < 0. This is mathematically repugnant,
but someone felt it important enough to design it into the language. For example, we
think of 8 mod 5 as being 3, just as −12 mod 5 is 3. But in C, the former is 3 and the
latter is -2.

To produce a mathematically correct mod, use C’s mod, then add b if the result is
negative. For example:

static __inline__ int posmod(int a, int b)

{

6I won’t discuss mixing data types, e.g. what happens when you multiply a short times a long and
storing the result in an int.

7Note that IEEE floating-point arithmetic is completely different in this regard: Inf is used for overflow
situations, NaN for 0/0 and other oddities.
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int r = a % b;

if (r < 0)

r += b;

return r;

}

9.7 Bit numbering in C

In C, the least significant bit is numbered 0; the most significant bit is numbered n− 1 for
n-bit integers8. The following idioms are often seen:

unsigned x = 1 << 5;

This results in 0x20, which is 25. In general, 1<<n is 2n although please remember that we
are working with fixed word sizes9, so don’t expect 1<<397 to be 2397.

Here is a partial table:

n 0 1 2 3 4 5 6 7
1<<n 0x01 0x02 0x04 0x08 0x10 0x20 0x40 0x80

9.8 Representation of polynomials

Remember that we are working with p = 2, so all polynomial coefficients are 0 or 1. A
polynomial

∑n
i=0 aix

i is represented by setting the ith bit to ai. For example,

x4 + x + 1 = 10011 = 0x13

Finite-field elements are represented no differently. As with the compact notation introduced
in section 3.3 (which was really me writing in binary), the x or the u disappears and is inferred
by context. So u2 + u would be 0110, or 0x06.

8This has absolutely nothing to with hardware bit ordering at the schematic level (PowerPC calls the
MSB the 0 bit), which is invisible to software.

9GP, along with most computer algebra systems, implements arbitrary precision arithmetic. In this
section, though, I’m focusing on low-level implementations such as are encountered in the engineering world,
where fixed word sizes are the norm.
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9.9 Addition using XOR

Addition in F2 is simply addition mod 2. Here is an addition table:

+ 0 1

0 0 1
1 1 0

The logic people (see also [7]) have another name for this function from F2 × F2 to F2: the
exclusive OR. If we put on our logic hats and think of 0 as corresponding to false and 1
as corresponding to true, then the result (the sum) of two inputs is true if one or the other
is true, but not both (hence the exclusive part).

What about addition of polynomials? Just as before, we add componentwise, with no carries.
For example, suppose we want to compute the sum of x3 +x2 +1 and x3 +x2 +x. In binary,
these are 1101 and 1110. The addition looks like:

1101

+ 1110

------

0011

which is x+1 and checks out. Note that this is like integer addition, but without the carries.
In particular, a given bit in the output depends only on the input bits above it. Thus,
XORing an integer is a bitwise operation: each bit in the output depends only on the
corresponding bits in the input.

All processors implement XOR instructions. This is a single instruction, which completes
in a single clock cycle or so10, and is very fast, as compared to, say, integer multiplication
or division. At the hardware level, it requires very simple circuitry — again, in contrast to
integer multiplication or division. In particular, note that for an n-bit processor we get n bit
additions all at the same time. This is why finite-field arithmetic with p = 2 is so efficient.
In a hardware design, one is not limited to 32-bit or 64-bit words, etc.: One can declare very
wide bit arrays and have all those XORs going on in parallel.

In C, this is spelled very simply. The XOR operator is a single caret. For example, let’s
compute the sum of x3 +x2 +1 and x3 +x2 +x. In hex, these are 0xd and 0xe. The addition
looks like:

unsigned a = 0xd;

unsigned b = 0xe;

unsigned c = a ^ b;

10Non-pipelined systems notwithstanding.
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9.10 Scalar multiplication using AND

Multiplication in F2 is simply multiplication mod 2. Here is a multiplication table:

· 0 1

0 0 0
1 0 1

The logic people have another name for this function from F2 × F2 to F2: the AND. Again
thinking of 0 as false and 1 as true, then the result (the product) of two inputs is true if one
is true and the other is true.

9.11 Bit-manipulation paradigms

C has several bitwise operators: AND, OR, XOR, NOT, LEFT-SHIFT and RIGHT-SHIFT.
They all have standard uses which you will encounter.

• XOR: We’ve seen this already for polynomial addition. Also, it can be used to toggle
one or more bits. For example:

int i;

unsigned x = 0xee;

for (i = 0; i < 10; i++)

x ^= 0x02;

This will repeatedly toggle bit 1 (remember bit numbers start at 0 on the right) of the
given value, resulting in the sequence 0xee, 0xec, 0xee, 0xec, . . . .

• OR: This binary operator (i.e. it takes two inputs) produces output 1 if either one
input is 1, or the other input is 1. Unlike XOR for + and AND for ·, it doesn’t have
as clear a mathematical meaning. However it pops up a lot in the bit set idiom:

unsigned x = 0xa0;

x |= 1;

This sets bits 0, whether it was set or not. If bit 0 is already known to be a 0, then
this is equivalent to adding 1.

• NOT: This unary operator (i.e. it takes one input) negates its input, i.e. turns 1
bits to 0 bits and vice versa. It is spelt with a tilde, as follows:

77



unsigned a = 0xa0;

unsigned b = ~a;

This is often used in conjunction with the AND operator, as we will see.

• AND: We’ve seen this already for scalar multiplication. It crops up much more often,
though, in two idioms:

The bit test operation sees if certain bits are set. For example:

if (x & 0x10)

x ^= 0x13;

Here, if x has bit 4 set, then bits 4, 1 and 0 are toggled.

The bit clear idiom uses AND and NOT. For example:

x &= ~0x20;

This means, clear bit 5.

• LEFT-SHIFT and RIGHT-SHIFT: For left shift, each bit is moved one position to the
left. The old most significant bit is shifted off; a zero bit moves in to fill the empty
spot in the least significant bit. For right shift, the least significant bit is shifted off
the right; if the input is unsigned, a zero bit moves in to fill the vacancy on the left11.

For example:

int i;

unsigned x = 1;

for (i = 0; i < 4; i++) {

printf(" %02x", x);

x <<= 1;

}

for (i = 0; i < 4; i++) {

printf(" %02x", x);

x >>= 1;

}

printf("\n");

This prints out 0x01, 0x02, 0x04, 0x08, 0x10, 0x08, 0x04, 0x02.

11For signed integers, sign extension is used on right shift, i.e. the new MSB takes the value of the old
MSB. This is perfectly appropriate from an integer-arithmetic point of view, since a right shift corresponds
to integer division by 2 and we want, say, −12/2 to be −6. However, for our purposes here, doing polynomial
rather than integer arithmetic, we always want unsigned arithmetic. In fact this is the only point at which
signed vs. unsigned matters for us.

78



9.12 Field multiplication using shifts and XORs

Field multiplication is as described in section 3.6. We just need to remember that we are
getting a no-brained piece of silicon to do our work for us, so we need to spell out some things
that you and I would take for granted. For example, what’s the degree of a polynomial?
You know just at a glance. For a particular application, of course your polynomial degree is
probably known ahead of time. But for general-purpose use, the following will do12:

unsigned polydeg(unsigned r)

{

int d = 0;

if (r == 0) {

return 0;

// Or, treat this as an error condition, depending on

// how you want to handle the degree of the zero polynomial.

// For my purposes, it suffices to assign it degree zero, just

// like all the other constant polynomials.

}

while (r >>= 1)

d++;

return d;

}

Given that, the following will suffice to perform multiplications. Again, for a given imple-
mentation you’ll probably know your degree so you won’t have to search for it, and the loops
could be unrolled etc.

unsigned ffmul(unsigned a, unsigned b, unsigned r)

{

int degb = polydeg(b);

int degr = polydeg(r);

unsigned bit_at_deg = 1 << degr;

unsigned prod = 0;

unsigned temp;

int i, power;

for (i = 0; i <= degb; i++) {

// Test if this bit position is set.

if (!(b & (1 << i)))

12There are several obvious ways to optimize this as well, but the current implementation is preferred for
clarity.
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continue;

// Now multiply a by the power of x on the current term

// of b, reducing mod r en route.

temp = a;

for (power = 1; power <= i; power++) {

temp <<= 1;

if (temp & bit_at_deg) // If x^n appears,

temp ^= r; // then subtract r(x).

}

// Add in this partial product.

prod ^= temp;

}

return prod;

}

Note the use of several bit-manipulation paradigms.

9.13 Repeated squaring

Repeated squaring is easy to implement in software, since it matches up with binary arith-
metic. For example:

unsigned ffpower(

unsigned a,

int power, // This handles positive powers only.

unsigned r)

{

unsigned a2 = a;

unsigned out = 1;

while (power != 0) {

if (power & 1) // Test current bit

out = ffmul(out, a2, r);

power = (unsigned)power >> 1; // Prepare to test next bit

a2 = ffmul(a2, a2, r);

}

return out;

}
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As described in section 2.6, we form a, a2, etc. (in the a2 variable), but include in our result
(out) only the correct ones.

9.14 Reciprocation and division

Given repeated squaring, it’s easy to recriprocate. Using Lagrange’s theorem as described
in section 3.11, we can reciprocate by raising to the pn − 2 power:

unsigned ffrecip(unsigned b, unsigned r)

{

int n = polydeg(r);

int pn2 = (1 << n) - 2; // Incorrect if n == 0.

if (b == 0) {

... Handle the divide-by-zero error as you wish.

}

return ffpower(b, pn2, r);

}

Then, a/b is a · (b−1):

unsigned ffdiv(unsigned a, unsigned b, unsigned r)

{

unsigned binv;

binv = ffrecip(b, r);

return ffmul(a, binv, r);

}

9.15 Arithmetic with implicit leading one

xxx add is the same

xxx hard-code polydeg calls

xxx re-write mul
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9.16 Polynomial basis vs. log domain

9.17 Table lookups

xxx lexical ordering

xxx dissect the schneier examples, and attribute them.

xxx more about why Gal cfg is easier in C
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Part V

Appendices
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Appendix A

Blankinship’s algorithm for extended
GCD

Since Z and Fp[x] are both Euclidean domains, we have a Euclidean GCD algorithm for
both. This algorithm is usually (in my experience) presented as follows:

• Input a, b; output g.

• If b = 0, g := a; stop. (This avoids a divide-by-zero exception below.)

• Let c := a, d := b.

• Top of loop:

– Use integer or polynomial division on c and d to obtain quotient q and remainder r
such that q = cd+r and r < d (for integers) or deg(r) < deg(d) (for polynomials).

– If r = 0, g = d; stop.

– c := d, d := r.

– Go to top of loop.

To then obtain m, n such that ma + nb = g, one then works the algorithm in reverse. Not
only is this tedious, but also it requires one to remember (on paper) or allocate space for (in
software) all the intermediate c, d values.

A superior method is due to Blankinship [9, Ch. 1.2.1]. The derivation is given in Knuth;
here I will describe the algorithm. The key is that m and n are computed along with the
GCD g, with no need for backtracking. The algorithm is:

• Input a, b; output g.
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• If b = 0, g := a; stop. (This avoids a divide-by-zero exception below.)

• Let c := a, d := b.

• Let m′ := 1, m := 0, n′ := 0, n := 1.

• Top of loop:

– Use integer or polynomial division on c and d to obtain quotient q and remainder r
such that q = cd+r and r < d (for integers) or deg(r) < deg(d) (for polynomials).

– If r = 0, g := d; stop.

– c := d, d := r.

– Let t := m′, m′ := m, m = t− qm.

– Let t := n′, n′ := n, n = t− qn.

– Go to top of loop.
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Appendix B

Shanks algorithm for discrete logs in a
cyclic group

Above we saw how to compute logs using a linear search. That is, given a cyclic group G of
order N , a generator g and an element a, simply test all the N powers g0, g1, g2, . . . , gN−1

to find which one is equal to a. (If none of them equals a, then G is not a group, its order
isn’t really N , g isn’t really a generator, or a isn’t really a member of the group.)

This is fine for small groups. The time requirement is clearly O(N), with storage space O(1).
However, for large groups there is a method due to Shanks [12] with much better execution
time, at the expense of more storage space.

Let G, N , g and a be as above, and let k be the logarithm of a with respect to g, i.e.
a = gk, with 0 ≤ k < N . The trick is to view k as a two-digit, base-m number i + jm where
m = b

√
Nc, and 0 ≤ i, j < m. Then

a = gi+jm

= gigjm

ag−i = gjm

The algorithm is as follows:

• Make two arrays of ordered pairs. The first array consists of the m pairs (i, ag−i); the
second consists of the m pairs (j, gjm). (When you generate these arrays, probably
you’ll loop over the i’s and j’s, so the arrays will already be sorted by i’s and j’s.)

• Choose some ordering of group elements and sort both arrays by the second elements
of the ordered pairs, i.e. the ag−i’s and the gjm’s.

• Search the arrays for a pair of pairs such that ag−i = gjm.
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It can be shown (and is easy to see) that you can search a pair of sorted length-m arrays in
O(m) comparisons. Clearly this is O(

√
N) in space, more expensive than the linear search.

But the time savings from O(N) to O(
√

N) is dramatic.
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Appendix C

How to find primitive elements of Fp

In section 2.7 on page 14 I discussed one way to find a primitive element of Fp: search for
it. That is, given a non-zero element g of Fp, write down all the p− 2 powers g, g2, . . . , gp−1

and check if they are all distinct. While this suffices to show that an element is a generator,
it is more work than necessary.

From group theory, recall that if g is a generator of the multiplicative group F×
p which has

order p − 1, then gp−1 = 1 and no smaller positive power sends g to 1. Also recall that if
g were to have smaller order k, i.e. gk = 1 for k < p − 1, that order would need to divide
the order of the group, i.e. k | p − 1. Thus we can factor p − 1, and raise g only to powers
dividing p− 1. If any proper divisor sends g to 1, g is not a generator. As an error check on
one’s computations, it is nice to also verify that gp−1 is 1.

For example, let’s see if 2 generates F23. Since proper divisors of p− 1 = 22 are 1, 2 and 11,
we only need to check 2, 22 and 211. Clearly, neither 2 nor 4 is 1 mod 23; 211 = 2048, which
mod 23 is 1 since 2047 = 23 · 89. Therefore 2 is not a generator. Likewise 3 and 4 fail, but
5 succeeds.
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Appendix D

How to find irreducible polynomials
in Fp[x]

In section 3.4 on page 20 I discussed a few techniques for finding irreducible polynomials in
Fp[x]:

• For degree three or less, use the root test since if there is a non-trivial factorization,
at least one factor must be linear.

• For degree four above, first use the root test to check for linear factors, then use trial
division by factors of degree 2 through n/2.

Here are a few more options.

D.1 Universal-polynomial algorithm

There is an irreducibility algorithm, much more efficient than trial division, which I found
in a snippet of C code on thee web a while back. I would attribute it to the proper person,
but I have since lost the URL and haven’t found it in any other references. Nonetheless, I’ve
discovered that the concept is very simple.

In section 4 on page 31 I defined the universal polynomial xpn − x, and noted that this
factors into the product of all monic irreducibles of degree d for all d dividing n. Suppose
r(x) is a given polynomial in Fp[x] and let m be the degree of r(x). Divide r(x) by its
leading coefficient to make it monic, if it is not already: thus any factors of r will also be
monic. If r(x) has an irreducible factor of degree i less than m, then that factor will divide
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xpi − x. Contrapositively, if r(x) has no common factors with xpi − x for i < m, then r(x)
is irreducible.

(Example: Suppose r(x) is of degree 8, with irreducible factors r1 and r2 of degrees 3 and
5, respectively. Then r1 must be one of the factors of xp3 − x, and r2 must be one of the
factors of xp5 − x.)

Now, xpm − x can be a very high-degree polynomial, which makes sense since it can have a
lot of factors. Fortunately, we don’t care about all of those factors, so we can avoid huge
polynomials as follows: For each i from 1 up to and including m − 1, find xpi − x mod
r(x) and compute the GCD of r with the remainder. If there is a common factor, it will be
retained mod r(x). Reducing mod r(x) just keeps the degree reasonable. If the GCD is 1
for each power, r is irreducible.

More specifically, here is the algorithm:

• Input p a prime, r(x) in Fp[x].

• Set m := deg〈r(x)〉

• Set U(x) := x

• For i from 1 to m− 1:

– Set U(x) := (U(x))p mod r. (Here, U is xpi
mod r.)

– Set g(x) := GCD(r(x), U(x)− x)

– If g(x) 6= 1 then return REDUCIBLE

• Return IRREDUCIBLE

D.2 Derivative test for multiple factors

One may quickly test for repeated factors by computing the GCD of r and its formal deriva-
tive. This is not an irreducibility test, but it can be a quick way to reveal some factors. Also
it is a necessary preliminary for the next option.

D.3 One pass of Berlekamp’s algorithm

The above universal-polynomial algorithm is efficient, but for implementation in a computer
program it turns out that it is even more efficient to run one pass of Berlekamp’s factorization
algorithm (which requires squarefree input): [10, Ch. 4.1] and appendix F.
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D.4 All-irreducibles algorithm

The discussion in section 4.3 on page 33 immediately suggests a technique to produce all the
remaining irreducibles of a given degree, given a single one (found e.g. by one of the above
methods).

• Given r(x) of degree n in Fp[x], write down all the pn elements of the finite field
Fp[x]/〈r(x)〉.

• Perhaps after making up a log table to facilitate computation, for each element α take
repeated pth powers until you get a repetition. This will give you Frobenius orbits of
each element.

• For each Frobenius orbit, take all the distinct ρi(α)’s, write down
∏

i(x − ρi(α)) and
multiply it out using arithmetic defined by r(x). This will give you minimal polynomials
for each element.

• You will obtain a result much like the root chart in section 4.3 on page 33. Discard all
minimal polynomials of degree less than n. The remaining minimal polynomials are
all the monic irreducibles of degree n.

Example:

• Given x3 + x + 1 of degree 3 in F2[x], we have the eight field elements 000, 001, 010,
011, 100, 101, 110, 111.

• 0002 = 000

• 0012 = 001

• 0102 = 100; 1002 = 110; 1102 = 010.

• 0112 = 101; 1012 = 111; 1112 = 011.

• (x− 000) = x

• (x− 001) = x + 1

• (x− 010)(x− 100)(x− 110) = x3 + x + 1

• (x− 011)(x− 101)(x− 111) = x3 + x2 + 1

• Degree-3 polynomials in the above are x3 + x + 1 and x3 + x2 + 1.
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Appendix E

How to find primitive polynomials in
Fp[x]

In appendix C on page 88 I discussed how to find primitive elements of Fp. The key is that
F×

p is cyclic of order p−1; given a in Fp, it suffices to check that ad 6= 1 for all proper divisors
d of p− 1.

Here the same concept applies. Given r(x), first test that r(x) is irreducible as described
in appendix D on page 89. Second, r(x) will be primitive if u is a primitive element mod
r. Let n = deg(r) and work in the finite field Fp[x]/〈r(x)〉. Recall that this field has a
multiplicative group of order pn − 1. Find all proper divisors d of pn − 1. If ud 6= 1 for all of
them, then u is a primitive element mod r, and r is a primitive polynomial. Otherwise, r is
not primitive.

Note: The amount of work involved depends highly on the factorization of pn− 1. Also note
that for p = 3 and n = 2, or for p = 2 and various values of n, pn−1 can be a prime number.
In such cases, all monic irreducibles of degree n are primitive, by Lagrange’s theorem. (In
fact, by Lagrange’s theorem all elements of the field other than 0 and 1 have order pn − 1.)
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Appendix F

Factoring in Fp[x] and Fpn[x]

In the main body of the paper I discussed factoring by trial division, which is possible since
given a polynomial f(x) in Fpn [x] there are finitely many polynomials of degree less than the
degree of f(x). This is fine (and even preferable) for small p, n and degree. However, for
factoring larger polynomials in a software implementation, a much more efficient method is
available.

The following algorithm (Berlekamp’s along with necessary preprocessing) is proved correct
in Lidl and Niederreiter [10]; here, I show only the algorithm itself. I note that, in contrast
to the much harder problem of factoring polynomials over Z[x] or Q[x], this algorithm is
easy to implement in software and also is very efficient. That is, factoring polynomials in
Fp[x] and Fpn [x] is “easy” whereas factoring in Z[x] or Q[x] (by current methods, at least)
is “hard”.

Input is f(x) ∈ Fpn [x]. For input in Fp[x], just use n = 1. Let m = deg(f(x)).

F.1 Recursion

The algorithm is recursive: as presented here, it will either determine that a polynomial is
irreducible, or it will produce a pair of non-trivial factors. If one’s goal is merely to determine
whether f(x) is irreducible, this pass is sufficient, but if one’s goal is to produce a complete
factorization of f(x), one must repeat the algorithm for both factors.
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F.2 Squarefree preparation

Berlekamp’s algorithm requires squarefree input. This may be obtained by first taking the
GCD of the input polynomial and its derivative:

• Assume that the input f(x) is non-zero and has degree greater than 1 (otherwise we
don’t need to be here).

• g(x) = GCD(f(x), f ′(x))

• If g(x) has degree 0, f(x) is squarefree; proceed to Berlekamp’s algorithm.

• Else if f ′(x) = 0, the input is a perfect p power of the form

akx
kp + ak−1x

(k−1)p + . . . + a1x
p + a0

for k = m/p, with pth root

akx
k + ak−1x

k−1 + . . . + a1x + a0

This root may or may not be squarefree; recursively apply this step to the pth root.

• Else f(x) has proper factors g(x) and f(x)/g(x). Repeat this step for the former, and
proceed to Berlekamp’s algorithm for the latter.

F.3 Berlekamp’s algorithm

Input f(x) ∈ Fpn [x] is assumed squarefree as described above, with m = deg(f(x)). The key
insight [10] is that if we can find an h(x) ∈ Fpn [x] such that h(x)pn ≡ h(x) mod f(x), then

f(x) =
∏

c∈Fpn

GCD(f(x), h(x)− c)

The algorithm uses linear algebra on the field Fpn to find such an h(x).

• Allocate an m×m matrix B, whose elements will be elements of Fpn .

• Populate the B matrix with row i equal to the coefficients of xpni mod f(x), for
0 ≤ i < m.

• Replace B with B − I, i.e. subtract 1 on the main diagonal.

• Transpose the B matrix, i.e. B := Bt.
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• Using row reduction, put the matrix in row echelon form. (Note: One can use column
reduction with an untransposed B, but I feel that, at least for myself, row reduction
is more familiar and less error-prone.)

• The nullity of the matrix is the number of irreducible factors of f(x). However, as
presented here the algorithm will only consider the cases when the nullity is 1, or
greater than 1.

• Compute a basis for the nullspace of the reduced matrix. If the nullspace has dimension
1 (i.e. if the rank of the reduced matrix is m − 1), then f(x) is irreducible in Fpn [x];
stop.

• For each row, let h(x) have coefficients corresponding to row elements; for each c ∈ Fpn ,
compute f1(x) = GCD(f(x), h(x)− c).

• When an h(x) and a c is found1 such that deg(f1(x)) is greater than 0 and less than
deg(f(x)), f1(x) and f2(x) = f(x)/f1(x) are proper factors. Recursively apply this
algorithm to each of them until a factorization into irreducibles has been obtained.

1Such will always be found, but not all rows will suffice: e.g. one row will produce h(x) = 1, which does
not lead to a non-trivial factorization.
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Appendix G

How to construct a root chart

There are two ways to construct a root chart (example root charts appear in sections 4.3
and 6.3):

(i) Given the polynomial xpn − x and a monic irreducible degree-n polynomial r(x) in
Fp[x] (see appendix D for irreducibility testing) with which to define arithmetic for
an Fpn , use Berlekamp’s algorithm (appendix F) to factor xpn − x in Fp[x]. Then, for
each resulting monic irreducible factor, use Berlekamp’s algorithm in Fpn [x], or use
trial evaluations over all elements of Fpn , to find roots in Fpn for each of the resulting
factors.

(ii) Use Galois theory as described in section 5:

• Write down a logarithm table for Fpn .

• For increasing divisors d of n, use the subfield/log criterion to find elements of
Fpd , i.e. elements whose log is a multiple of (pn − 1)/(pd − 1).

• For each resulting element a of Fpd , write down the d distinct Frobenius-orbit

elements a, ap, . . . , apd−1
. Cross them all off from the log table so they will be

processed only once. Also compute the product

d∏
i=1

(x− api

)

This is the minimal polynomial for all d elements in the Frobenius orbit. Write
down this minimal polynomial, followed by the d roots.

• Once all elements in the log table have been crossed off, sort rows of the root
chart lexically by the minimal polynomials in the left-hand column.

The latter method is far easier to implement with pencil and paper, and also runs faster in
software.
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Appendix H

Tables

H.1 Tables of some irreducible polynomials in Fp[x]

Primitive polynomials are marked with an asterisk. Please see Lidl and Niederreiter [10] for
much more extensive tables.

F22 F23 F24 F25 F26

111 * 1011 * 10011 * 100101 * 1000011 *
1101 * 11001 * 101001 * 1001001

11111 101111 * 1010111
110111 * 1011011 *
111011 * 1100001 *
111101 * 1100111 *

1101101 *
1110011 *
1110101

F32 F33

101 1021 *
112 * 1022
122 * 1102

1112
1121 *
1201 *
1211 *
1222
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H.2 Some primitive irreducible polynomials in F2n

n r in hex Tap bits n r in hex Tap bits

1 3 0 33 200000053 6 4 1 0
2 7 1 0 34 40000001b 4 3 1 0
3 b 1 0 35 800000005 2 0
4 13 1 0 36 100000003f 5 4 3 2 1 0
5 25 2 0 37 200000003f 5 4 3 2 1 0
6 43 1 0 38 4000000063 6 5 1 0
7 83 1 0 39 8000000011 4 0
8 11d 4 3 2 0 40 10000000039 5 4 3 0
9 211 4 0 41 20000000009 3 0

10 409 3 0 42 40000000027 5 2 1 0
11 805 2 0 43 80000000059 6 4 3 0
12 1053 6 4 1 0 44 100000000021 5 0
13 201b 4 3 1 0 45 20000000001b 4 3 1 0
14 402b 5 3 1 0 46 400000000003 1 0
15 8003 1 0 47 800000000021 5 0
16 1002d 5 3 2 0 48 100000000002d 5 3 2 0
17 20009 3 0 49 2000000000071 6 5 4 0
18 40027 5 2 1 0 50 400000000001d 4 3 2 0
19 80027 5 2 1 0 51 800000000004b 6 3 1 0
20 100009 3 0 52 10000000000009 3 0
21 200005 2 0 53 20000000000047 6 2 1 0
22 400003 1 0 54 4000000000007d 6 5 4 3 2 0
23 800021 5 0 55 80000000000047 6 2 1 0
24 100001b 4 3 1 0 56 100000000000095 7 4 2 0
25 2000009 3 0 57 200000000000011 4 0
26 4000047 6 2 1 0 58 400000000000063 6 5 1 0
27 8000027 5 2 1 0 59 80000000000007b 6 5 4 3 1 0
28 10000009 3 0 60 1000000000000003 1 0
29 20000005 2 0 61 2000000000000027 5 2 1 0
30 40000053 6 4 1 0 62 4000000000000069 6 5 3 0
31 80000009 3 0 63 8000000000000003 1 0
32 1000000af 7 5 3 2 1 0 64 1000000000000001b 4 3 1 0

98



H.3 Some logarithm tables for Fpn

Log
p = 2, r = 111, g = 10
k gk order

3 01 1
1 10 3
2 11 3

Antilog
p = 2, r = 111, g = 10
k gk order

1 10 3
2 11 3
3 01 1

Log
p = 2, r = 1011, g = 10
k gk order

7 001 1
1 010 7
3 011 7
2 100 7
6 101 7
4 110 7
5 111 7

Antilog
p = 2, r = 1011, g = 10
k gk order

1 010 7
2 100 7
3 011 7
4 110 7
5 111 7
6 101 7
7 001 1

Log
p = 2, r = 1101, g = 10
k gk order

7 001 1
1 010 7
5 011 7
2 100 7
3 101 7
6 110 7
4 111 7

Antilog
p = 2, r = 1101, g = 10
k gk order

1 010 7
2 100 7
3 101 7
4 111 7
5 011 7
6 110 7
7 001 1
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Log
p = 2, r = 10011, g = 10
k gk order

15 0001 1
1 0010 15
4 0011 15
2 0100 15
8 0101 15
5 0110 3

10 0111 3
3 1000 5

14 1001 15
9 1010 5
7 1011 15
6 1100 5

13 1101 15
11 1110 15
12 1111 5

Antilog
p = 2, r = 10011, g = 10
k gk order

1 0010 15
2 0100 15
3 1000 5
4 0011 15
5 0110 3
6 1100 5
7 1011 15
8 0101 15
9 1010 5

10 0111 3
11 1110 15
12 1111 5
13 1101 15
14 1001 15
15 0001 1

Log
p = 2, r = 11001, g = 10
k gk order

15 0001 1
1 0010 15

12 0011 5
2 0100 15
9 0101 5

13 0110 15
7 0111 15
3 1000 5
4 1001 15

10 1010 3
5 1011 3

14 1100 15
11 1101 15
8 1110 15
6 1111 5

Antilog
p = 2, r = 11001, g = 10
k gk order

1 0010 15
2 0100 15
3 1000 5
4 1001 15
5 1011 3
6 1111 5
7 0111 15
8 1110 15
9 0101 5

10 1010 3
11 1101 15
12 0011 5
13 0110 15
14 1100 15
15 0001 1
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Log
p = 2, r = 11111, g = 11
k gk order

15 0001 1
12 0010 5
1 0011 15
9 0100 5
2 0101 15

13 0110 15
7 0111 15
6 1000 5
8 1001 15

14 1010 15
11 1011 15
10 1100 3
5 1101 3
4 1110 15
3 1111 5

Antilog
p = 2, r = 11111, g = 11
k gk order

1 0011 15
2 0101 15
3 1111 5
4 1110 15
5 1101 3
6 1000 5
7 0111 15
8 1001 15
9 0100 5

10 1100 3
11 1011 15
12 0010 5
13 0110 15
14 1010 15
15 0001 1
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Appendix I

Storage representations

We’ve already seen a few different ways to represent elements of finite fields, using the
canonical embodiment Fp[x]/〈r(x)〉:

• As equivalence classes of remainders mod r, e.g. x2 + x + 〈x4 + x + 1〉.

• As Fp[u] ∼= Fp[x]/〈r(x)〉, with u a root of r(x), e.g. u2 + u.

• As an array or n-tuple of coefficients, e.g. [0, 1, 1, 0] or (0, 1, 1, 0) but usually written
just 0110.

There are some other notations that are also encountered in the literature:

• As logarithms, as discussed above. This is sometimes referred to as the log domain.
It leaves you with the question of how to write 0, which doesn’t have a log.

• We can treat an n-tuple of coefficients as a base-p integer, then convert bases from p
to 10. E.g. elements of F24 would then convert from 0000, 0001, 0010, . . . , 1111 to 0,
1, 2, . . . , 15. Since this is decimal, it looks confusingly like arithmetic mod pn but of
course, unless n = 1, it’s not (which is one reason I don’t like this notation).

• For base p = 2, engineers often use base-16 or hexadecimal notation. For digits, use
0-9 for 0-9 and a-f (or A-F, depending on personal preference) for 11-15; prefix with 0x
to distinguish from decimal. E.g. 1010 is 10 in decimal, which is 0xa in hex. Likewise,
10101110 is 0xae in hex. The three monic irreducibles in F24 are written 0x13, 0x19
and 0x1f; 0x104c11db7 is a degree-32 irreducible, primitive polynomial in F2[x] (which
incidentally is used for error detection in Ethernet networking); the AES polynomial
[1] is 0x11b.
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