
A technique for DDA seed shifting and scaling

John Kerl

Feb 8, 2001

1 Introduction

This paper describes a simple, unified technique for DDA seed shifting and
scaling. As well, the terms “DDA”, “seed”, “shifting” and “scaling” are
defined.

2 Background

Let P (x) be a polynomial of degree N , over the real numbers. Let xs, s =
0, 1, 2, . . ., be an evenly spaced input mesh, i.e. xs = x0 + sh for a mesh
width h. We define the first difference of P (xs) to be

∆P (xs) = P (xs+1)− P (xs) (1)

The second difference of P (xs) is defined as

∆2P (xs) = ∆P (xs+1)−∆P (xs) (2)

= P (xs+2)− 2P (xs+1) + P (xs) (3)

The zeroth difference is defined as ∆0P (xs) = P (xs), and higher-order dif-
ferences are defined as ∆j+1P (xs) = ∆jP (xs+1)−∆jP (xs).

1

The N +1 differences cj = ∆jP (x0) are called DDA seeds (“DDA” is defined
below) for P (x) on the input mesh xs. The first N + 1 polynomial outputs
P (x0), P (x1), . . . , P (xN) may be represented as a vector D, as may the seeds
c. The two are related by the following matrix A, with rows i and columns
j (using zero-based indices):

Aij =

(
i

j

)
(4)

A−1
ij = (−1)i+j

(
i

j

)
(5)

c = A−1D (6)

D = Ac (7)

with the definition

(
i

j

)
=

∣∣∣∣∣
i!

j!(i−j)!
, i >= j;

0, i < j
(8)

The matrix A−1 extracts finite differences of P (x0), using P (x0) through
P (xN); the matrix A turns the DDA seeds back into the first N+1 polynomial
outputs on the mesh. (Note that both A and A−1 are lower-triangular. The
non-zero entries of A are simply the contents of the Pascal triangle; the
non-zero entries of A−1 are the same, but with alternating signs.)

The polynomial P (x) is completely specified by the input mesh xs along with
any one of the following: the N +1 polynomial coefficients, the N +1 outputs
on the mesh, or the N + 1 DDA seeds for the mesh. In engineering practice
the latter is often convenient since it allows one to reproduce the polynomial
outputs, for many more mesh points than just the first N + 1, using only
addition, as follows.

A digital differential analyzer (“DDA”) is defined by the following system of
recurrence relations:

2

Initial conditions Update rules

R0(0) = c0 R0(s + 1) = R0(s) + R1(s)
R1(0) = c1 R1(s + 1) = R1(s) + R2(s)
R2(0) = c2 R2(s + 1) = R2(s) + R3(s)

.
RN−1(0) = cN−1 RN−1(s + 1) = RN−1(s) + RN(s)

RN(0) = cN RN(s + 1) = RN(s)

The register R0(s) is the output of the DDA, and represents P (xs). The
remaining registers, R1(s) through RN(s), preserve the internal state of the
DDA from one step to the next. The initial values of the registers are simply
the seeds c calculated using finite differences of P (x0), as described above.

Since only R0(s) is of interest, we often rename the output of the DDA at
time step s simply D(s). Then D(s) is a sequence, the values of which equal
P (xs) on the mesh xs.

Advantages of using DDAs for polynomial evaluation include the following:
(1) Since only addition is used at each step, a DDA allows efficient evaluation
of polynomials by circumventing the need for floating-point multiplies. (2)
The N additions at each time step may be done in parallel. (3) Further
efficiency may be obtained if the addition is done in fixed-point. In fact,
fixed-point DDA hardware circuitry can evaluate a polynomial of arbitrary
order at the rate of one sample per processor clock cycle.

(Costs of using DDAs include the following: (1) Given a set of seeds, one
may obtain values of P (x) only on the specified mesh. (This paper describes
a technique for modifying seeds to generate values on a different mesh). (2)
Values must be obtained sequentially, e.g. obtaining P (37) requires having
first computed P (36), etc. (3) It can be shown that round-off error accumu-
lates as s increases, and is approximately equal to the product of the initial
seed error and the Nth power of the step number.)

3 Problem statement

It is often necessary to modify DDA seeds to generate output for a different
mesh than originally specified. If the original mesh is x0+sh, then modifying
the seeds to produce output over the new mesh (x0 +δh)+sh is called “shift-

3

ing”. Modifying the seeds to produce output over the new mesh x0 + αsh
is called “scaling”. Various ad hoc methods for shifting or scaling, particu-
larly for non-negative integer δ or α, have been presented in the paper “The
ABCs of DDAs” and elsewhere. This paper describes the general resampling
problem for changing the mesh from x0 + sh to (x0 + δh) + αsh, yielding a
single technique for shifting and scaling. This common formula is equivalent
to the previous ad-hoc methods, as special cases.

4 Technique

We transform the N+1 original seeds into the first N+1 polynomial outputs.
We then find the Lagrange interpolating polynomial for P (x) given the input
mesh xs = x0 + sh and the N + 1 outputs P (x0 + sh), and evaluate this
polynomial on the new mesh x0 + δh + αsh to obtain the N + 1 new outputs
P (x0 + δh + αsh). Lastly, we transform the first N + 1 polynomial outputs
on the new mesh back to N + 1 new DDA seeds.

In general, given polynomial inputs x0, x1, . . . , xN and outputs y0, y1, . . . , yN ,
the Lagrange interpolator L(x) is

L(x) =
N∑

t=0

N,k 6=t∏
k=0

yt
x− xk

xt − xk

(9)

Since our yt will be the N + 1 outputs of our Nth-degree polynomial P (x)
evaluated on the original mesh, and since the Lagrange interpolator is unique,
L(x) is exactly P (x).

Equation 9 becomes:

P (x0 + δh + αsh) =
N∑

t=0

N,k 6=t∏
k=0

P (x0 + th)
(x0 + δh + αsh)− (x0 + kh)

(x0 + th)− (x0 + kh)
(10)

=
N∑

t=0

N,k 6=t∏
k=0

P (x0 + th)
(δ + αs− k)

(t− k)
(11)

Equivalently, expressing equation 10 using matrix notation, the N+1-element

4

vector D′(s) = P (x0 + δh + αsh), s = 0, 1, . . . , N, is related to the N + 1-
element vector D(t) = P (x0 + th), t = 0, 1, . . . , N, by the following matrix
Q(δ, α) with rows s and columns t:

Qst(δ, α) =
N,k 6=t∏
k=0

δ + αs− k

t− k
(12)

Thus

c′ = A−1Q(δ, α)Ac (13)

5 Examples

Here are tabulated A−1Q(δ, α)A for various values of δ and α, in the cubic
case.

δ = 0, α = 1 (identity transformation):
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



δ = 0, α = 2 (scale only; modified seeds produce even-numbered samples of
original sequence): 

1 0 0 0
0 2 1 0
0 0 4 4
0 0 0 8


δ = 1, α = 2 (shift and scale; modified seeds produce odd-numbered samples
of original sequence): 

1 1 0 0
0 2 3 1
0 0 4 8
0 0 0 8



5

δ = 0, α = 3 (scale only; modified seeds produce every third output sample):
1 0 0 0
0 3 3 1
0 0 9 18
0 0 0 27


δ = 0, α = 1/2 (scale only; modified seeds produce output twice as finely):

1 0 0 0
0 1/2 −1/8 1/16
0 0 1/4 −1/8
0 0 0 1/8


δ = 1, α = 1 (shift only; modified seeds produce output starting at x1):

1 1 0 0
0 1 1 0
0 0 1 1
0 0 0 1


δ = 2, α = 1 (shift only; modified seeds produce output starting at x2):

1 2 1 0
0 1 2 1
0 0 1 2
0 0 0 1


δ = −1, α = 1 (shift only; modified seeds produce output starting at x−1):

1 −1 1 −1
0 1 −1 1
0 0 1 −1
0 0 0 1


δ = 1.1, α = 0.837 (shift and scale):

1 1.1000 0.0550 −0.0165
0 0.8370 0.8525 −0.0026
0 0 0.7006 0.6564
0 0 0 0.5864



6

