
C for math folks

John Kerl

Department of Mathematics, University of Arizona

April 22, 2008

J. Kerl (Arizona) C for math folks April 22, 2008 1 / 29

Outline

1 Why use C?

2 First example

3 Second example

4 Third example

5 More

J. Kerl (Arizona) C for math folks April 22, 2008 2 / 29

Why use C?

Why use C?

J. Kerl (Arizona) C for math folks April 22, 2008 3 / 29

Why use C?

Why use C?

• To a first-order approximation: don’t bother! Modern software such
as Mathematica, Maple, Matlab, Python, etc. free you from the kinds
of low-level details that C requires you to think about.

• But . . . every once in a while, primarily for performance reasons, you’ll
need to code all or part of an application in C.

• In my industry career, I found that the paradigm was: prototype in
Matlab (the code is faster to write), deploy in C (the code runs
faster). You may need C (or even Fortran!) for certain jobs, and/or
when working with certain collaborators.

• C and C++ are the languages that higher-level languages are written
in. True software wizardry (if that is your desire) requires mastery of
C.

J. Kerl (Arizona) C for math folks April 22, 2008 4 / 29

Why use C?

History

Unix and C were born the same year I was. Back in those days, sideburns
and horn-rimmed glasses were really cool and people were walking on the
moon. Also, the accepted wisdom was that whereas applications could be
written in high-level languages like COBOL, Fortran, and PL/I, operating
systems needed to be coded entirely in assembler.

Problem: each CPU architecture has its own completely different assembly
language. This made porting operating systems a pain!

Solution: Brian Kernighan and Dennis Ritchie (immortalized ever after as
“K&R”) flew their freak flag and wrote a mid-level language which maps
rather directly to machine language. It turns out 95% or so of the OS
code could be written in C.

Much has changed in the almost 40 years since, but still, C is a mid-level
language: portable, efficient, and plain.

J. Kerl (Arizona) C for math folks April 22, 2008 5 / 29

Why use C?

What makes C different?

Years ago, one would say “Here’s how Matlab is different from C.” Now, in
the 21st century, higher-level languages are often the first ones most of us
encounter — and I find myself telling you how C is different from Matlab.

• C is a compiled language. Instead of just running your program, you
must first have another program (the compiler) translate it into
machine language. Then, you execute that program.
Example: python hello.py (1 step) vs. gcc -Wall -Werror
hello.c -o hello; ./hello (2 steps).
(I always use the flags -Wall to enable all warnings and -Werror to
treat warnings as errors — and so should you.)

• C is a strongly typed language. In Matlab, x=[1.0:0.1:4.0] or
x=’abc’ or whatever. In C, you have to say whether x is an integer,
floating-point number, etc.

• There are other differences which we’ll see as we go along.

J. Kerl (Arizona) C for math folks April 22, 2008 6 / 29

First example

First example

J. Kerl (Arizona) C for math folks April 22, 2008 7 / 29

First example

demo1.c

Here’s the obligatory first example:

#include <stdio.h>
int main(void)
{

printf("Hello, world!\n");
return 0;

}

To run it, do

gcc -Wall -Werror demo1.c -o demo1
./demo1

J. Kerl (Arizona) C for math folks April 22, 2008 8 / 29

First example

Functions

• There are those darned header files (e.g. stdio.h)! We’ll soon see
why they matter.

• Execution starts at main. Command-line arguments may be passed
in; see below.

• The syntax for a function is
output-type function-name (arguments . . .) { body . . . }. The
keyword void means no arguments. Subroutines, i.e. functions with
no return value, should have return type void.

• Return 0 from main to signal successful completion back to the shell.
(You can return 1 for an abnormal exit.) When you start scripting
multiple invocations of your program, you may find that this is a good
habit.

• There are bloody holy wars about indentation style, which other
authors will engage in. I won’t comment. As long as you don’t
reformat my perfect, beautiful code, we’re at peace.

J. Kerl (Arizona) C for math folks April 22, 2008 9 / 29

Second example

Second example

J. Kerl (Arizona) C for math folks April 22, 2008 10 / 29

Second example

demo2.c

Even this simple example contains much of what you need to know:

#include <stdio.h> // For the printf prototype

#include <string.h> // For the sscanf prototype

#include <stdlib.h> // For the exit prototype

#include <math.h> // For the sin prototype

int main(int argc, char ** argv)

{

int n = 40;

int i;

float x, y;

if (argc == 2) {

if (sscanf(argv[1], "n=%d", &n) != 1) {

fprintf(stderr, "Usage: %s [n=...]\n", argv[0]);

exit(1);

}

}

for (i = 0; i < n; i++) { // Here is a comment.

x = (float)i/n * 2.0 * M_PI;

y = sin(x);

printf("%3d %11.7f %11.7f\n", i, x, y);

}

return 0;

}

J. Kerl (Arizona) C for math folks April 22, 2008 11 / 29

Second example

Command-line arguments; control blocks

• I’ll tell you about header files (#include ...) soon, I promise!

• Command-line arguments are passed from the shell into your C
program through the argv array. The program name is always
argv[0]. If you type ./demo2 xyz pdq at the shell prompt, then the
C program gets argc=3, with argv[0]="./demo2", argv[1]="xyz",
and argv[2]="pdq". How you handle command-line parsing is
completely up to you — including determining whether argument
strings are valid string representations of integers, etc.

• Beginnings and endings of control blocks are done with curly braces.
This is much cleaner than begin and end keywords. (Whitespace
control structure, e.g. in Python, is even cleaner!)

J. Kerl (Arizona) C for math folks April 22, 2008 12 / 29

Second example

Comments

All variables are typed, and must be declared at the top of the function.
The main types are as follows (remember 8 bits are one byte):

• int: signed integer, usually 32-bit i.e. −231 ≤ n < 231.

• unsigned: unsigned integer, also usually 32-bit, so 0 ≤ n < 232.

• float: single-precision IEEE float, 32 bits: about 7 sigfigs.

• double: double-precision IEEE float, 64 bits: about 13 sigfigs.

• char: single characters, 8 bits.

• Zero-based arrays of any type, e.g. int x[10] has elements x[0]
through x[9].

• Pointers to variables or starts of arrays, e.g. int * px = &n or int
* px = &x[0]. The ampersand (&) is the address-of operator which
gives the location of an item in RAM.

• One of the most powerful features of C is the struct: compound
data types. There’s no time to talk about them today, alas.

• I won’t talk about short or long either, let alone long long.
J. Kerl (Arizona) C for math folks April 22, 2008 13 / 29

Second example

Bits and bytes

• Why do we care about the number of bits anyway? Higher-level
languages don’t ask me to care — why should C?

Python:
print 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15
1307674368000

C:
int x = 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15;
printf("%d\n", x);
2004310016

What happened? 32-bit arithmetic is done mod 232. Surprise! There
are arbitrary-precision subroutine libraries, but they’re add-ons.
(Batteries not included.)

J. Kerl (Arizona) C for math folks April 22, 2008 14 / 29

Second example

Mixed types; for loops

• Why did I type (float)i/n instead of i/n? In fact, what’s 7/4?
Not 1.75 but 1. (Another surprise!) Integer division is quotient and
remainder. If you want a floating-point quotient of integers, cast one
or both operands to float first. (int operand int is int; int
operand float is float. This is called promotion.)

• C has a wonderfully flexible for-loop structure:
for (initial statement(s); continuation test; update statement(s)) {

body ...

body ...

body ...

}

which means
initial statement(s);

while (contiuation test is true) {

body ...

body ...

body ...

update statement(s);

}

J. Kerl (Arizona) C for math folks April 22, 2008 15 / 29

Second example

Input from strings

• The sscanf routine reads strings and stores values into specified
variables. It returns the number of variables successfully scanned.
Here, I typed

if (sscanf(argv[1], "n=%d", &n) != 1) {
fprintf(stderr, "Usage: %s [n=...]\n", argv[0]);
exit(1);

}

The sscanf routine takes argv[1] which the user typed in via
./demo2 n=10. It sees if argv[1] starts with n=, followed by
numerical characters. If so, it stuffs the resulting number (here, 10)
into n and returns 1. Else, the value of n is undefined and sscanf
returns 0.

J. Kerl (Arizona) C for math folks April 22, 2008 16 / 29

Second example

Formatted output

• Formatted I/O consists of formatted input (e.g. sscanf to scan from
string and fscanf to scan from a file) and formatted output (e.g.
printf).

• Unlike higher-level languages, where a single print or disp routine
will print out anything you throw its way, in C you need to use format
specifiers (e.g. %3d) which depend on the data type being printed out.

• The main format types are d, f, and lf for integer, float, and double,
respectively. Also e and le to print floats/doubles in scientific
notation.

• In between the % and the format type are field widths: e.g. %4d for
making integers take up four spaces, and %11.7f for 11 characters
wide with 7 of those characters after the decimal point.

J. Kerl (Arizona) C for math folks April 22, 2008 17 / 29

Second example

Libraries and linking

• Compile this with gcc -Wall -Werror demo2.c -o demo2 and you
get:

/tmp/ccoFJT8z.o: In function ‘main’:
demo2.c:(.text+0xa7): undefined reference to ‘sin’
collect2: ld returned 1 exit status

• Compile instead with gcc -Wall -Werror demo2.c -o demo2 -lm
and it works. The problem is that sin is in the math library. In
standard batteries-not-included fashion (“Oh, you wanted to do
math? All righty then.”), the C linker only links in libraries you
specify via -lname. The exception is the so-called C library, with
things like printf, exit, etc.

J. Kerl (Arizona) C for math folks April 22, 2008 18 / 29

Second example

The result

./demo2 10
Usage: ./demo2 [n=...]
./demo2 n=10
0 0.0000000 0.0000000
1 0.6283185 0.5877852
2 1.2566371 0.9510565
3 1.8849556 0.9510565
4 2.5132742 0.5877852
5 3.1415927 -0.0000001
6 3.7699113 -0.5877854
7 4.3982296 -0.9510565
8 5.0265484 -0.9510565
9 5.6548667 -0.5877853

J. Kerl (Arizona) C for math folks April 22, 2008 19 / 29

Third example

Third example

J. Kerl (Arizona) C for math folks April 22, 2008 20 / 29

Third example

Multiple files and subroutines

Here is the file demo3.c.

#include <stdio.h> // For the printf prototype

#include <string.h> // For the sscanf prototype

#include <stdlib.h> // For the exit prototype

#include <math.h> // For the sin prototype

#include "my_stuff.h" // For the my_function prototype

int main(int argc, char ** argv)

{

int n = 12;

int i;

float c = 2.7;

float x, y;

for (i = 0; i < n; i++) {

x = (float)i/n * 4.0;

y = my_function(x, c); // Mystery function ...

printf("%3d %11.7f %11.7f\n", i, x, y);

}

return 0;

}

J. Kerl (Arizona) C for math folks April 22, 2008 21 / 29

Third example

Multiple files and subroutines

Here is the file my stuff.h . . .

#ifndef MY_STUFF_H

#define MY_STUFF_H

#define MY_CONSTANT 2.0

// Computes x to the c power.

float my_function(float x, float c);

#endif //MY_STUFF_H

. . . and here’s my stuff.c.

#include <math.h>

#include "my_stuff.h"

// Computes x to the c power.

float my_function(float x, float c)

{

return pow(x, c);

}

Note (huge bummer for math folks!!) that the C language does not have
an exponentiation operator: ** has to do with pointers to pointers, and ^
is a bitwise XOR. For squaring you can do x*x, and so on, but in general
you need to call the pow function.

J. Kerl (Arizona) C for math folks April 22, 2008 22 / 29

Third example

Output

./demo3
0 0.0000000 0.0000000
1 0.3333333 0.0514959
2 0.6666667 0.3346213
3 1.0000000 1.0000000
4 1.3333334 2.1743760
5 1.6666666 3.9718387
6 2.0000000 6.4980192
7 2.3333333 9.8522921
8 2.6666667 14.1291370
9 3.0000000 19.4190254
10 3.3333333 25.8090858
11 3.6666667 33.3835793

J. Kerl (Arizona) C for math folks April 22, 2008 23 / 29

Third example

Headers

• Always put the #ifdef and #endif jazz at the top and bottom of
your headers, so you don’t get “multiply defined . . . ” errors when
headers are included more than once (perhaps indirectly — headers
can include other headers!).

• The compiler doesn’t like you calling a function it doesn’t already
know something about. It wants to have seen the prototype

float my_function(float x, float c);

before it sees you calling the function:

y = my_function(x, c); // Mystery function ...

This way it knows the data types of the arguments and the return
value.

J. Kerl (Arizona) C for math folks April 22, 2008 24 / 29

Third example

Headers

Header files (i.e. .h) files contain principally two things:

(1) Function prototypes, e.g. math.h has something like

double sin(double x);

(2) Constant definitions, e.g.

define M_PI 3.14159265358979323846 /* pi */

System header files are typically in /usr/include and are included with
#include <...>. Your header files are typically in . and are included
with #include "...". If you have headers in another directory, e.g.
../project2, then compile with -I../project2 to let the C
preprocessor know where to look.

J. Kerl (Arizona) C for math folks April 22, 2008 25 / 29

Third example

Names of system headers

Question: OK, so this is really annoying! If I’m calling sin, sscanf, exit,
etc., how do I know I need to include math.h, string.h, stdlib.h? Isn’t
this some sort of sadistic guessing game?!?

Answer: Perhaps so! But you can type man sscanf etc. at the command
prompt. Manpages generally do a good job of telling you which header file
contains the prototype for the function you’re interested in.

J. Kerl (Arizona) C for math folks April 22, 2008 26 / 29

Third example

Third example

• Compile this with gcc -Wall -Werror demo3.c -o demo3 and you
get:

/tmp/ccCMgV6x.o: In function ‘main’:
demo3.c:(.text+0x4a): undefined reference to
‘my_function’
collect2: ld returned 1 exit status

• Compile instead with

gcc -Wall -Werror demo3.c my_stuff.c -o demo3 -lm

• Question: If I only made changes to my stuff.c and not demo3.c,
do I really need to recompile both of them? Answer: Certainly not!
This is what makefiles are for. Which is another topic

J. Kerl (Arizona) C for math folks April 22, 2008 27 / 29

More

More

J. Kerl (Arizona) C for math folks April 22, 2008 28 / 29

More

More

• There’s a lot more:

• Pointers
• Passing arguments by reference
• Structs
• Dynamic allocation
• Reading input from files
• Interfacing with Matlab
• Makefiles
• . . .

• Google for “C tutorial” and go nuts!

J. Kerl (Arizona) C for math folks April 22, 2008 29 / 29

	
	Why use C?
	First example
	Second example
	Third example
	More

