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Why use C?

Why use C?

• To a first-order approximation: don’t bother! Modern software such
as Mathematica, Maple, Matlab, Python, etc. free you from the kinds
of low-level details that C requires you to think about.

• But . . . every once in a while, primarily for performance reasons, you’ll
need to code all or part of an application in C.

• In my industry career, I found that the paradigm was: prototype in
Matlab (the code is faster to write), deploy in C (the code runs
faster). You may need C (or even Fortran!) for certain jobs, and/or
when working with certain collaborators.

• C and C++ are the languages that higher-level languages are written
in. True software wizardry (if that is your desire) requires mastery of
C.
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Why use C?

History

Unix and C were born the same year I was. Back in those days, sideburns
and horn-rimmed glasses were really cool and people were walking on the
moon. Also, the accepted wisdom was that whereas applications could be
written in high-level languages like COBOL, Fortran, and PL/I, operating
systems needed to be coded entirely in assembler.

Problem: each CPU architecture has its own completely different assembly
language. This made porting operating systems a pain!

Solution: Brian Kernighan and Dennis Ritchie (immortalized ever after as
“K&R”) flew their freak flag and wrote a mid-level language which maps
rather directly to machine language. It turns out 95% or so of the OS
code could be written in C.

Much has changed in the almost 40 years since, but still, C is a mid-level
language: portable, efficient, and plain.
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Why use C?

What makes C different?

Years ago, one would say “Here’s how Matlab is different from C.” Now, in
the 21st century, higher-level languages are often the first ones most of us
encounter — and I find myself telling you how C is different from Matlab.

• C is a compiled language. Instead of just running your program, you
must first have another program (the compiler) translate it into
machine language. Then, you execute that program.
Example: python hello.py (1 step) vs. gcc -Wall -Werror
hello.c -o hello; ./hello (2 steps).
(I always use the flags -Wall to enable all warnings and -Werror to
treat warnings as errors — and so should you.)

• C is a strongly typed language. In Matlab, x=[1.0:0.1:4.0] or
x=’abc’ or whatever. In C, you have to say whether x is an integer,
floating-point number, etc.

• There are other differences which we’ll see as we go along.
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First example

demo1.c

Here’s the obligatory first example:

#include <stdio.h>
int main(void)
{

printf("Hello, world!\n");
return 0;

}

To run it, do

gcc -Wall -Werror demo1.c -o demo1
./demo1
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First example

Functions

• There are those darned header files (e.g. stdio.h)! We’ll soon see
why they matter.

• Execution starts at main. Command-line arguments may be passed
in; see below.

• The syntax for a function is
output-type function-name (arguments . . . ) { body . . . }. The
keyword void means no arguments. Subroutines, i.e. functions with
no return value, should have return type void.

• Return 0 from main to signal successful completion back to the shell.
(You can return 1 for an abnormal exit.) When you start scripting
multiple invocations of your program, you may find that this is a good
habit.

• There are bloody holy wars about indentation style, which other
authors will engage in. I won’t comment. As long as you don’t
reformat my perfect, beautiful code, we’re at peace.
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Second example
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Second example

demo2.c

Even this simple example contains much of what you need to know:

#include <stdio.h> // For the printf prototype

#include <string.h> // For the sscanf prototype

#include <stdlib.h> // For the exit prototype

#include <math.h> // For the sin prototype

int main(int argc, char ** argv)

{

int n = 40;

int i;

float x, y;

if (argc == 2) {

if (sscanf(argv[1], "n=%d", &n) != 1) {

fprintf(stderr, "Usage: %s [n=...]\n", argv[0]);

exit(1);

}

}

for (i = 0; i < n; i++) { // Here is a comment.

x = (float)i/n * 2.0 * M_PI;

y = sin(x);

printf("%3d %11.7f %11.7f\n", i, x, y);

}

return 0;

}
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Second example

Command-line arguments; control blocks

• I’ll tell you about header files (#include ...) soon, I promise!

• Command-line arguments are passed from the shell into your C
program through the argv array. The program name is always
argv[0]. If you type ./demo2 xyz pdq at the shell prompt, then the
C program gets argc=3, with argv[0]="./demo2", argv[1]="xyz",
and argv[2]="pdq". How you handle command-line parsing is
completely up to you — including determining whether argument
strings are valid string representations of integers, etc.

• Beginnings and endings of control blocks are done with curly braces.
This is much cleaner than begin and end keywords. (Whitespace
control structure, e.g. in Python, is even cleaner!)
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Second example

Comments

All variables are typed, and must be declared at the top of the function.
The main types are as follows (remember 8 bits are one byte):

• int: signed integer, usually 32-bit i.e. −231 ≤ n < 231.

• unsigned: unsigned integer, also usually 32-bit, so 0 ≤ n < 232.

• float: single-precision IEEE float, 32 bits: about 7 sigfigs.

• double: double-precision IEEE float, 64 bits: about 13 sigfigs.

• char: single characters, 8 bits.

• Zero-based arrays of any type, e.g. int x[10] has elements x[0]
through x[9].

• Pointers to variables or starts of arrays, e.g. int * px = &n or int
* px = &x[0]. The ampersand (&) is the address-of operator which
gives the location of an item in RAM.

• One of the most powerful features of C is the struct: compound
data types. There’s no time to talk about them today, alas.

• I won’t talk about short or long either, let alone long long.
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Second example

Bits and bytes

• Why do we care about the number of bits anyway? Higher-level
languages don’t ask me to care — why should C?

Python:
print 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15
1307674368000

C:
int x = 1*2*3*4*5*6*7*8*9*10*11*12*13*14*15;
printf("%d\n", x);
2004310016

What happened? 32-bit arithmetic is done mod 232. Surprise! There
are arbitrary-precision subroutine libraries, but they’re add-ons.
(Batteries not included.)
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Second example

Mixed types; for loops

• Why did I type (float)i/n instead of i/n? In fact, what’s 7/4?
Not 1.75 but 1. (Another surprise!) Integer division is quotient and
remainder. If you want a floating-point quotient of integers, cast one
or both operands to float first. (int operand int is int; int
operand float is float. This is called promotion.)

• C has a wonderfully flexible for-loop structure:
for (initial statement(s); continuation test; update statement(s)) {

body ...

body ...

body ...

}

which means
initial statement(s);

while (contiuation test is true) {

body ...

body ...

body ...

update statement(s);

}
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Second example

Input from strings

• The sscanf routine reads strings and stores values into specified
variables. It returns the number of variables successfully scanned.
Here, I typed

if (sscanf(argv[1], "n=%d", &n) != 1) {
fprintf(stderr, "Usage: %s [n=...]\n", argv[0]);
exit(1);

}

The sscanf routine takes argv[1] which the user typed in via
./demo2 n=10. It sees if argv[1] starts with n=, followed by
numerical characters. If so, it stuffs the resulting number (here, 10)
into n and returns 1. Else, the value of n is undefined and sscanf
returns 0.
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Second example

Formatted output

• Formatted I/O consists of formatted input (e.g. sscanf to scan from
string and fscanf to scan from a file) and formatted output (e.g.
printf).

• Unlike higher-level languages, where a single print or disp routine
will print out anything you throw its way, in C you need to use format
specifiers (e.g. %3d) which depend on the data type being printed out.

• The main format types are d, f, and lf for integer, float, and double,
respectively. Also e and le to print floats/doubles in scientific
notation.

• In between the % and the format type are field widths: e.g. %4d for
making integers take up four spaces, and %11.7f for 11 characters
wide with 7 of those characters after the decimal point.
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Second example

Libraries and linking

• Compile this with gcc -Wall -Werror demo2.c -o demo2 and you
get:

/tmp/ccoFJT8z.o: In function ‘main’:
demo2.c:(.text+0xa7): undefined reference to ‘sin’
collect2: ld returned 1 exit status

• Compile instead with gcc -Wall -Werror demo2.c -o demo2 -lm
and it works. The problem is that sin is in the math library. In
standard batteries-not-included fashion (“Oh, you wanted to do
math? All righty then.”), the C linker only links in libraries you
specify via -lname. The exception is the so-called C library, with
things like printf, exit, etc.
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Second example

The result

./demo2 10
Usage: ./demo2 [n=...]
./demo2 n=10
0 0.0000000 0.0000000
1 0.6283185 0.5877852
2 1.2566371 0.9510565
3 1.8849556 0.9510565
4 2.5132742 0.5877852
5 3.1415927 -0.0000001
6 3.7699113 -0.5877854
7 4.3982296 -0.9510565
8 5.0265484 -0.9510565
9 5.6548667 -0.5877853
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Third example

Third example
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Third example

Multiple files and subroutines

Here is the file demo3.c.

#include <stdio.h> // For the printf prototype

#include <string.h> // For the sscanf prototype

#include <stdlib.h> // For the exit prototype

#include <math.h> // For the sin prototype

#include "my_stuff.h" // For the my_function prototype

int main(int argc, char ** argv)

{

int n = 12;

int i;

float c = 2.7;

float x, y;

for (i = 0; i < n; i++) {

x = (float)i/n * 4.0;

y = my_function(x, c); // Mystery function ...

printf("%3d %11.7f %11.7f\n", i, x, y);

}

return 0;

}
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Third example

Multiple files and subroutines

Here is the file my stuff.h . . .

#ifndef MY_STUFF_H

#define MY_STUFF_H

#define MY_CONSTANT 2.0

// Computes x to the c power.

float my_function(float x, float c);

#endif //MY_STUFF_H

. . . and here’s my stuff.c.

#include <math.h>

#include "my_stuff.h"

// Computes x to the c power.

float my_function(float x, float c)

{

return pow(x, c);

}

Note (huge bummer for math folks!!) that the C language does not have
an exponentiation operator: ** has to do with pointers to pointers, and ^
is a bitwise XOR. For squaring you can do x*x, and so on, but in general
you need to call the pow function.
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Third example

Output

./demo3
0 0.0000000 0.0000000
1 0.3333333 0.0514959
2 0.6666667 0.3346213
3 1.0000000 1.0000000
4 1.3333334 2.1743760
5 1.6666666 3.9718387
6 2.0000000 6.4980192
7 2.3333333 9.8522921
8 2.6666667 14.1291370
9 3.0000000 19.4190254
10 3.3333333 25.8090858
11 3.6666667 33.3835793
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Third example

Headers

• Always put the #ifdef and #endif jazz at the top and bottom of
your headers, so you don’t get “multiply defined . . . ” errors when
headers are included more than once (perhaps indirectly — headers
can include other headers!).

• The compiler doesn’t like you calling a function it doesn’t already
know something about. It wants to have seen the prototype

float my_function(float x, float c);

before it sees you calling the function:

y = my_function(x, c); // Mystery function ...

This way it knows the data types of the arguments and the return
value.
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Third example

Headers

Header files (i.e. .h) files contain principally two things:

(1) Function prototypes, e.g. math.h has something like

double sin(double x);

(2) Constant definitions, e.g.

# define M_PI 3.14159265358979323846 /* pi */

System header files are typically in /usr/include and are included with
#include <...>. Your header files are typically in . and are included
with #include "...". If you have headers in another directory, e.g.
../project2, then compile with -I../project2 to let the C
preprocessor know where to look.
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Third example

Names of system headers

Question: OK, so this is really annoying! If I’m calling sin, sscanf, exit,
etc., how do I know I need to include math.h, string.h, stdlib.h? Isn’t
this some sort of sadistic guessing game?!?

Answer: Perhaps so! But you can type man sscanf etc. at the command
prompt. Manpages generally do a good job of telling you which header file
contains the prototype for the function you’re interested in.
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Third example

Third example

• Compile this with gcc -Wall -Werror demo3.c -o demo3 and you
get:

/tmp/ccCMgV6x.o: In function ‘main’:
demo3.c:(.text+0x4a): undefined reference to
‘my_function’
collect2: ld returned 1 exit status

• Compile instead with

gcc -Wall -Werror demo3.c my_stuff.c -o demo3 -lm

• Question: If I only made changes to my stuff.c and not demo3.c,
do I really need to recompile both of them? Answer: Certainly not!
This is what makefiles are for. Which is another topic . . . .
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More

More
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More

More

• There’s a lot more:

• Pointers
• Passing arguments by reference
• Structs
• Dynamic allocation
• Reading input from files
• Interfacing with Matlab
• Makefiles
• . . .

• Google for “C tutorial” and go nuts!
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