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February 3, 2008

Abstract

The following are notes to help me prepare for the University of Arizona math department’s Abstract
Algebra qualifier in August 2006. Since abstract algebra is my least-weak subject, I won’t have much to
say here: I will document a few tricky problem solutions, and collect some handy facts.

This paper is under construction.
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1 Disclaimer

There are many wonderful algebra texts. My personal favorite is Dummit and Foote [DF]. See also Grove
[Grove], Hungerford [Hun], or Lang [Lang]. Friedberg et al. [FIS] is a nice reference for linear algebra.
In this note, unlike my other qual-prep notes, I make no attempt to be comprehensive. Rather, I take
the opportunity to present some problem solutions, preceded by some useful items. For example, I gather
together in one handy reference all the criteria for diagonalizability of which I am aware.

2 Linear algebra

One might think this section should be contained in the discussion of modules — after all, a vector space is
nothing more than a module over a field. However, each of the three UA quals contains an undergraduate
component: for the algebra qual, this portion is over linear algebra. So, solutions to the linear-algebra
problems need not require the use of graduate-level material.

Criteria for diagonalizability: an n× n matrix A is diagonalizable . . .

• . . . iff its minimal polynomial splits with distinct factors.

• . . . if its characteristic polynomial splits with distinct factors. (This is sufficient, but not necessary:
consider the identity matrix.)

• . . . iff it is similar to a diagonal matrix, i.e. there exists an invertible n × n matrix Q and a diagonal
matrix D such that A = QDQ−1.

• . . . iff the sum of the dimensions of its eigenspaces is equal to n.

Criteria for non-diagonalizability:

• The minimal polynomial doesn’t split over the base field.

• The minimal polynomial has a double root.

• There is an eigenvalue λ such that ker(A− λI)2 properly contains ker(A− λI).

Example 2.1. B To construct a matrix which is non-diagonalizable over R, take a polynomial which
doesn’t split over R: say, λ2 + 1. Then write the companion matrix for that polynomial. In general, if
P (λ) = λn + an−1λ

n−1 + . . .+ a1λ+ a0 is a monic polynomial, a companion matrix for P (λ) is

−an−1 −an−2 · · · a1 a0

1 0 0

1
. . .
. . .

0 1 0

 .

That is, write the negated coefficients across the top, 1’s on the subdiagonal, and 0’s elsewhere. (One may
find other conventions for the companion matrix. You can write various matrices, e.g. the transpose of the
above, whose characteristic polynomial is what you desire.) For P (λ) = λ2 + 1, we get

A =
[
0 −1
1 0

]
.

C
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Example 2.2. B To construct a matrix which is non-diagonalizable over C, we can’t use the non-splitting
property, since C is algebraically closed. We have to find an example where the minimal polynomial has a
double root — say, a matrix which is non-zero but whose square is zero:

A =
[
0 0
1 0

]
The characteristic polynomial of A is λ2, which you can compute by taking det(A − λI). The minimal
polynomial has to divide the characteristic polynomial, and cannot be λ since A itself isn’t zero. Thus,
λ = 0 is a double root of the minimal polynomial. C

3 Useful classes of matrices

Many qualifier problems are of the form Give an example of . . . , or Prove or disprove . . . . To be successful
in providing examples and counterexamples, we need to have a toolkit of standard examples of things. One
large class of examples has to do with matrices: we have rings of matrices and groups of invertible matrices;
given a commutative ring R, we can obtain a non-commutative ring by, say, considering 2× 2 matrices over
R; and so on.

[xxx type me up]

Permutation matrices.

Rotation matrices: emphasize no real eigenvalues.

Projection matrices.

Shift matrices. Use as counterexample for T : V → V and V = ker(T )⊕ im(T ).

Elementary matrices Eij : use to sketch pfs of simplicity of Mn(K) and Z(Mn(K)).

4 Groups

Here are two criteria for solvability. One of them may be taken to be the definition, and the other may be
proved equivalent. In [Grove], the first is taken to be the definition. First, some preliminary definitions.

Definition 4.1. Let G be a group, and let x, y ∈ G. The commutator of x and y, written [x, y], is
xyx−1y−1.

Definition 4.2. Let G be a group. The derived subgroup of G, written G′, is generated by all the
commutators [x, y] where x and y range over all elements of G.

Definition 4.3. It is clear that G′ ≤ G. So, we can compute the derived subgroup of G′. The kth derived
subgroup of G is written G(k).

How to show a subgroup is normal:

• By definition of normalcy: H CG iff for all g ∈ G, gHg−1 ⊆ H.

• Similarly: H CG iff for all g ∈ G and all h ∈ H, ghg−1 ∈ H.
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• H CG iff H = kerφ for some homomorphism from G to some other group. (Kernels are normal.)

• If H ⊆ G′ then H CG.

Definition 4.4. Let G be a group. A nested sequence of subgroups Gi

G = G0 ≥ G1 ≥ G2 . . .

is called a series.

Definition 4.5. A series is called normal if
GDGi

for all i.

Definition 4.6. A series is called subnormal if

G = G0 DG1 DG2 . . . .

Mnemonic 4.7. In a subnormal series, each Gi is normal in the subgroup above it.

Definition 4.8. A subnormal series is called a composition series if it descends to 1, and if the Gi/Gi+1

are all simple (i.e. Gi+1 is a maximal normal subgroup of Gi) for all i.

Definition 4.9 (Definition of solvability). Let G be a group. Then G is said to be solvable if G(k) = 1 for
some integer k.

Proposition 4.10 (Alternate criterion for solvability). A group G is solvable iff there exists a subnormal
series, descending to 1 (i.e. Gk = 1 for some k), with abelian factors Gi+1/Gi.

Remark 4.11. Usually we use the derived series for this purpose.

Definition 4.12. A group is said to be nilpotent if it satisfies an awkward ascending-series condition which
I can never remember and, fortunately, which I don’t think I ever need to remember.

There are two alternative characterizations which are often useful:

Proposition 4.13 (Alternate criterion for nilpotency). For H < G, let [G,H] be the subgroup of G generated
by all commutators [g, h] for g ∈ G and h ∈ H. Define G0 = G, G1 = [G,G0], and in general Gi+1 = [G,Gi].
Then G is nilpotent iff the series descends to the trivial group, i.e. if there is an n such that Gn = 1.

Proposition 4.14 (Alternate criterion for nilpotency: [Grove], theorem I.7.8.). G is nilpotent iff it is the
direct product of its Sylow subgroups. In particular, if G is nilpotent, each Sylow subgroup is normal, and
hence is unique.

Proposition 4.15 (Sufficient condition for nilpotency). Finite p-groups are nilpotent.

Mnemonic 4.16. If G is trivial, then G0 = 1; if G is abelian, then G1 = 1. Thus nilpotent groups are
almost abelian in the sense that they descend to 1, just perhaps a bit slower than abelian groups do.

Mnemonic 4.17. Remember CANSA: cyclic groups ( abelian groups ( nilpotent groups ( solvable
groups ( all groups. (See [DF], section 6.1.)

(This is nice, but doesn’t come up nearly as often as FEPUI for rings (mnemonic 10.2).) All these inclusions
are proper. Examples:

• Z2 ⊕ Z2 is abelian but not cyclic.

• The quaternion unit group is nilpotent but not abelian.

• S4 is solvable but not nilpotent. (Use Grove’s I.7.8: there are 3 conjugate D4’s in S4, which are Sylow-2
subgroups of S4.)

• Sn is not solvable for n ≥ 5.
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5 Group actions

normal subgroups vs. orbit-stabilizer — ?

orbit-stabilizer formula

6 Semidirect products

Definition 6.1. Let G be a group with N C G and K ⊆ G. Furthermore suppose that G = NK and
N ∩K = {1}. If K acts on N (formally, if there is a homomorphism K → Aut(N)), we write

N oK

and call this the semidirect product of N and K. We sometimes write the action of k ∈ K on n ∈ N as
nk. Since G = NK, any g ∈ G may be written in the form (n, k). Multiplication in G is

(n1, k1)(n2, k2) = (n1n2
k1 , k1k2).

Remark 6.2. How does inversion work? Given (n, k) we need to find (m, j) such that (n, k)(m, j) = (1, 1).
This gives

(1, 1) = (n, k)(m, j) = (nmk, kj)

which forces j = k−1. Then, in the first slot, nmk = 1 forces

mk = n−1

m = (n−1)k−1
.

Thus,
(n, k)−1 = ((n−1)k−1

, k−1).

Example 6.3. B Dihedral groups may be written as

Dn = Cn o C2 = 〈ρ〉o 〈φ〉

where ρ is the rotation of order n and φ is the flip. The flip acts on the rotations by inverting them:

ρiφjρkφ` =

{
ρi+kφj+`, j even
ρi−kφj+`, j odd

which is to say (since there are only two distinct powers of φ)

ρiρkφ` = ρi+kφ`

ρiφρkφ` = ρi−kφ1+`.

This is the familiar transposition rule
φρk = ρ−kφ.

C

Example 6.4. B The T group (the other non-abelian group of order 12, besides A4 and D6) is

T = Z3 o Z4

where Z4 acts on Z3 by inversion. That is, 1 and 3 in Z4 negate elements of Z3; 0 and 2 in Z4 leave elements
of Z3 alone. C

6



Example 6.5. B Let V4 = {e, a, b, c} be the Klein-four group as usual. Let S3 act on V4 by permuting the
symbols a, b, and c. Then we can write the semidirect product

V4 o S3.

It can be shown (I won’t here) that this is isomorphic to S4. C

7 A semidirect product example

Note: This section is perhaps not qualifier material. Something came up in the 2006-07 511 course which
was “obvious” to the speaker, but not as obvious to everyone in the audience. Here I work through a detailed
(albeit inelegant) computation, from first principles, in order to increase the level of obviousness. Moreover,
the techniques here elucidate the kind of brainstorming one might need to resort to during an exam, on
scratch paper, as part of an attempt to conjecture a more elegant solution to be turned in.

Consider the semidirect product Zm oφ Zn. Recall that multiplication in Zm oφ Zn, written additively, is

(a, b) + (c, d) = (a+ [φ(b)](c), b+ d).

Then φ must be a homomorphism from Zn into Aut(Zm). Here I describe the possibilities for φ and compute
the center of these groups, starting with m = 7 and n = 3 as a concrete example.

Some notation: For brevity (I am not a number theorist), let Zm denote Z/mZ. Really, Zm is a commutative
ring with 1. As such, it has an additive group: all the elements of the ring, with addition as the operation,
forgetting about multiplication. Also, the invertible elements of the ring form a group called the unit group
or multiplicative group (which possesses a subgroup structure). When I write Zm in this section, I refer
to the additive group of the ring. When I write Z×m I refer to the multiplicative group.

Structure of the additive group: Recall that Zm is always cyclic of order m; 1 is always a generator. (Any
element relatively prime to m is also a generator. There are Φ(m) of these, where Φ is Euler’s totient
function. In particular, if m is prime, then any non-zero element of Zm is a generator.)

Structure and subgroup structure of the multiplicative group: Z×m has order Φ(m). In particular, recall that
when m is prime, Φ(m) = m − 1 and Z×m is cyclic. Here, 1 is not a generator (except when m = 2). In
general, we have to search for generators. For example, with m = 7, 23 = 1 so 2 is not a generator. On the
other hand, 3 has order 6 mod 7 and so 3 is a generator. Here are powers of 3 mod 7:

k 1 2 3 4 5 6
3k 3 2 6 4 5 1

In fact, we can use this to write down orders of elements of the isomorphic cyclic groups Z6 and Z×7 :

x ∈ Z6 1 2 3 4 5 6
|x| 6 3 2 3 6 1
x ∈ Z×7 3 2 6 4 5 1
|x| 6 3 2 3 6 1

So, Z×7 has two generators: 3 and 5. A cyclic group of order s has a unique subgroup for each divisor d of
s. Here, Z×7 has a subgroup of order 2, generated by 6: this is {1, 6}. It also has a subgroup of order 3,
generated by 2 or 4: this is {1, 2, 4}.

Structure of the automorphism group: Since Z7 is cyclic, any homomorphism from Z7 to itself, and in
particular any automorphism, is specified by its action on Z7’s 1: σ(x) = xσ(1). Since 7 is prime, there
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are 6 generators for Z7: all the non-zero elements. Thus, 1 may map to any generator. So, the elements of
Aut(Z7) are as follows:

Z7 σ1 σ2 σ3 σ4 σ5 σ6

0 0 0 0 0 0 0
1 1 2 3 4 5 6
2 2 4 6 1 3 5
3 3 6 2 5 1 4
4 4 1 5 2 6 3
5 5 3 1 6 4 2
6 6 5 4 3 2 1

Note that σi(x) = ix, i.e. the ith automorphism is just multiplication by i. How do we compose automor-
phisms? We have σi(σj(x)) = ijx for any test point x, so σi ◦ σj is σij . So, arithmetic on the i’s and j’s
is done in the multiplicative group Z×7 . This substantiates what we already know about Aut(Z7), namely,
that it is isomorphic to Z×7 which in turn is isomorphic to Z6. Given the above information about Z×7 , we
see that Aut(Z7) is cyclic, generated by either σ3 or σ5.

Recall that for any group homomorphism ψ : A → B, given an element a ∈ A of order s, the order of ψ(a)
in B must divide the order of a in A. This is because, if as = eA, ψ(as) = ψ(a)s = eB .

To construct the semidirect product Z7 oφ Z3, we need φ to be a homomorphism from Z3 to Aut(Z7). The
possible homomorphisms from the order-3 cyclic group Z3 to the order-6 cyclic group Z×7 are specified by
the image of Z3’s 1. It can map to σ1 (trivial homomorphism), σ2 (monomomorphism), or σ4 (monomomor-
phism):

Z3 φ1 φ2 φ3

0 σ1 σ1 σ1

1 σ1 σ2 σ4

2 σ1 σ4 σ2

Now I want to parameterize the possible φ’s as simply as possible. The automorphism σt = φ(1) must be
of order dividing 3. This means that σ3

t = σ1. Since the arithmetic in Aut(Z7) is that of the multiplicative
group Z×7 , this means that t3 ≡ 1 (mod 7).

At this point we can write the semidirect-product arithmetic without any reference to φ. We know that
φ(b) = bφ(1) = (σt)b, and furthermore that σt(x) = tx. This means that for c ∈ Z7,

[φ(b)](c) = [σt]b(c) = tbc

So the group arithmetic is

(a, b) + (c, d) = (a+ [φ(b)](c), b+ d) = (a+ ctb, b+ d).

Now we can ask about the center of Z7 oφ Z3. If t = 1, i.e. if φ is the trivial map, then we have the abelian
group Z7 ⊕ Z3. Now suppose we have t = 2, i.e. φ(1) = σ2. What is the center? We know that (a, b) is in
the center if it commutes with all (c, d). A standard trick is to say that in particular, (a, b) must commute
with our judicious choice of (c, d). Just as a guess, let’s try putting c = 1 and d = 0. Then

(a, b) + (c, d) = (a+ ctb, b+ d)
(c, d) + (a, b) = (c+ atd, d+ b)
(a, b) + (1, 0) = (a+ tb, b)
(1, 0) + (a, b) = (1 + a, b).
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For these two to be equal forces tb ≡ 1 (mod 7) for b ∈ Z3. We have t = 2 and choices of b are 0, 1, and 2,
so tb ≡ 1 (mod 7) only for b = 0. This means that b = 0 for any (a, b) in the center of Z7 oφ Z3.

At this point we need to make a second judicious choice. We have

(a, 0) + (c, d) = (a+ c, d)
(c, d) + (a, 0) = (c+ atd, d).

For these two to be equal requires
a− atd = a(1− td) = 0.

Choose d = 1 to get
a− 2a = a(1− 2) = 6a = 0

which forces a = 0. This, together with b = 0, shows that the center of Z7 oφ Z3, for non-trivial φ, is trivial.

* * *

Next, we generalize. What here depended on specific values m = 7 and n = 3? We used the fact that m was
prime, and we required a solution to tn ≡ 1 (mod m). In order for the map φ to be non-trivial, we required
a non-trivial solution, i.e. t 6≡ 1 (mod m). This is what I have in the past heard referred to as a metacyclic
group parameterized by m, n, and t. I call these two conditions on t a constructibility criterion.

What about the center of Zm oφ Zn for prime m? The same two judicious choices give us

tb = 1

and
a(1− td) = 0.

The second of these forces a = 0 if m is prime, as long as t is not 1, which is true for the non-abelian case
of interest. The first does not always force b = 0.

For example, with n = 4 and t = 2, the constructibility criterion is for there to be a non-trivial solution t for

t4 ≡ 1 (mod 7) and t 6≡ 1 (mod 7).

This is satisfied by t = 6. Then tb = 1 has solutions b = 0 and b = 2, so the center is non-trivial:

Z(Z7 oφ Z3) = {(0, 0), (0, 2)}.

8 Classification of small groups

A common question is: classify all groups of order 20. Often, we are given an order of the form p2q for
primes p and q. If you read through various algebra texts, e.g. [DF], you will see various tricks employed.
Here, though, is a (not necessarily exhaustive!) list of the kinds of things you can try.

(0) The zeroth step is to know something about your destination:

– Write down all the abelian groups, using, say, elementary-divisor decomposition.
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– Also write down any non-abelian groups that come to mind. For example, for every even order
there is a dihedral group of that order. So for order 20, we know there is D10. Likewise, if 4
divides the order of the group, then there is the product of a dihedral with a cyclic-two — e.g.
for order 20, there is D5 × C2.

Listing some known groups will give you a lower bound on the number of non-abelian groups, helping
you to check your work in subsequent steps.

(1) Use the Sylow theorems. E.g. for order p2q we have:

np ≡ 1 mod p,
nq ≡ 1 mod q,
np | q,

nq | p2.

(2) If you can conclude that both np = 1 and nq = 1, then let P be the p-Sylow subgroup and let Q be
the q-Sylow subgroup. Then G = P ×Q. Often, this will reduce to the abelian cases: groups of order
p or p2 are abelian. However, there are non-abelian groups of order p3.

(3) For the case that, say, np = 1 but nq 6= 1, then G = P oQ. Now you can list out the homomorphisms
from Q into Aut(P ). It is handy to know that:

– Aut(Zp) ∼= F×p ∼= Zp−1.

– Aut(Zn
p ) ∼= GL(n,Fp). Also, from [Rotman],

#GL(n,Fp) = (pn − 1)(pn − p)(pn − p2 · · · (pn − pn−1).

(4) Petal diagrams. [Needs a nice picture here.] Say you have the case p = 3 and np = 4. Then there are
four subgroups of order 3, which intersect only at the identity. This means there are at least 9 elements
in the group, 8 of them of order 3 — with none of the latter possibly being in a q-Sylow subgroup.
Often, you can use such an argument to show that such a case would require more elements than the
order of the group. [Insert an example here.]

Do note that Rotman soft-pedals classification of groups of a given order. See, for example, [DF] for a more
thorough treatment.

9 Wreath products

Note: This section is not qualifier material. The subject of wreath products came up while I was TA’ing 511
in 2006-2007, and I couldn’t find any examples as clear as the following so I thought I’d write them down
for posterity.

Definition 9.1. The wreath product (as I have seen it most clearly defined) of two groups A and K is
as follows: K maps homomorphically into Sn for some n. (This makes sense when K is finite. A wreath
product can also be defined for infinite K.) Then

A oK = An oK

where the action of K on An is by permuting indices on n-tuples in An. This requires specifying n as well
as the homomorphism from K into Sn. When no homomorphism is given, it is taken to be the left-regular
representation. (Remember that for the left regular action, n would be the order of K.)
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Remark 9.2. The automorphism group of A has nothing to do with the wreath product (again, as I have
seen it defined). All the group K does is permute the positions of n-tuples of An for some n — it does not
act automorphically on the elements at those positions.

Example 9.3. B For Z o Z3, we could have Z3 o Z3 with Z3 cyclically permuting triples of integers. I will
use the exponent notation for semidirect actions, as in section 6, and since Z is abelian, I will use additive
rather than multiplicative notation:

((m1,m2,m3), a) + ((n1, n2, n3), b) = ((m1,m2,m3) + (n1, n2, n3)a, a+ b).

If we let Z3 act on Z3 by right-shifting, then as a particular example:

((m1,m2,m3), 1) + ((n1, n2, n3), 2) = ((m1,m2,m3) + (n1, n2, n3)1, 1 + 2)
= ((m1,m2,m3) + (n2, n3, n1), 0)
= ((m1 + n2,m2 + n3,m3 + n1), 0).

Note that the group operation on An (here, Z3) is just plain old componentwise operation, except that we
first permute the positions of the tuples in the second operand. Hence the term wreath.

We could also have Z3 act on Z3 by left-shifting, or by no shift at all. Or we could have Z3 act on Z6 by
left-shifting pairs of triples:

(m1,m2,m3,m4,m5,m6)1 = (m2,m3,m1,m5,m6,m4).

Etc. etc. C

Example 9.4. B For Z o S3, there are several possibilities. Again taking n = 3, one possibility is:

((m1,m2,m3), σ) + ((n1, n2, n3), τ) = ((m1,m2,m3) + (n1, n2, n3)σ, σ ◦ τ).

As a particular example in that construction,

((m1,m2,m3), (13)) + ((n1, n2, n3), (123)) = ((m1,m2,m3) + (n1, n2, n3)(13), (13) ◦ (123))
= ((m1,m2,m3) + (n3, n2, n1), (12))
= ((m1 + n3,m2 + n2,m3 + n1), (12)).

We could also have S3 act on Z3 by permutations, or inverse permutations; we could have S3 act on Z2 by
having the odd permutations swap 2-tuples of integers and having the even permutations leave 2-tuples of
integers intact; etc. C

10 Rings

Let m be a squarefree integer, other than 0 or 1. Then the quadratic integers of Q(
√
m), which Grove

calls Rm, are {
Z[ 1+

√
m

2 ], m ≡ 1 (mod 4).
Z[
√
m], m ≡ 2, 3 (mod 4)

Mnemonic 10.1. Which is which? Just remember that i =
√
−1, −1 is 3 mod 4, the integers of Q(i) are

Z[i], and “two three four”.

Mnemonic 10.2. Remember FEPUI [feh, pooey!]: fields ( Euclidean domains ( PIDs ( UFDs ( integral
domains.
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(See also CANSA for groups, mnemonic 4.17.) All these inclusions are proper. Standard examples ([DF],
end of section 8.3):

• Z is a Euclidean domain but not a field.

• Z[ 1+
√
−19

2 ] (i.e. the ring of integers of Q[
√
−19], as −19 ≡ 1 (mod 4)) is a PID which is not Euclidean.

• Z[x] is a UFD but not a PID (consider 〈2〉 and 〈x〉).

• Z[
√
−5] (i.e. the ring of integers of Q[

√
−5], as −5 ≡ 3 (mod 4)) is an integral domain which is not a

UFD. (Remember: 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).)

11 Fields

galois groups for cubics

Eisenstien criterion Eisenstein — make the distinction between irr’ty over Z vs. Q (or, ID and its QF
more generally).

calculus to find TPs etc., or cubic discriminant — equivalent.

galois groups for quartics?

Sp trick for quintics.

12 Modules and tensor products

Definition 12.1. An R-module is free iff it may be written as a direct sum of copies of R.

Example 12.2. B An n-dimensional vector space over a field K is isomorphic to Kn, hence free. C

Proposition 12.3. Let R be a commutative ring with identity, and let M be a two-sided unital R-module.
Then

R⊗R M ∼= M.

Mnemonic 12.4. Move all scalars over:

r ⊗m = (r · 1)⊗m = 1⊗ rm.

This works even for r = 0, since 0 · 1 = 0.

Proposition 12.5 (Hom modules). Let R be a commutative ring; let M and N be R-modules. Then

HomR(M,N)

is an R-module, where module addition is given by

(φ+ ψ)(m) = φ(m) + ψ(m)

and ring-module multiplication is given by

(rφ)(m) = rφ(m).
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Remark 12.6. Try to prove that rφ is actually an R-module homomorphism. You will immediately see
why R needs to be commutative. (If R is not commutative, then HomR(M,N) is merely an abelian group.)

Remark 12.7. We can instead make the abelian group HomR(M,M) into a ring, using addition as above,
but with composition as multiplication.

Remark 12.8. The notation HomR(M,M) is ambiguous — is it an R-module with ring-module multipli-
cation as above, or is it a ring with composition as its multiplication? Sometimes people write EndR(M) to
signify the latter.

Proposition 12.9 (FOIL for hom modules). Let R be a commutative ring; let M , M1, M2, N , N1, and N2

be R-modules. Then
HomR(M1 ⊕M2, N) ∼= HomR(M1, N)⊕HomR(M2, N)

and
HomR(M,N1 ⊕N2) ∼= HomR(M,N1)⊕HomR(M,N2).

Proposition 12.10 (FOIL for tensor products of direct sums). Let M , M1, and M2 be left R-modules; let
N , N1, and N2 be right R-modules. Then

(M1 ⊕M2)⊗N ∼= (M1 ⊕N)⊗ (M2 ⊕N) and M ⊗ (N1 ⊕N2) ∼= (M ⊕N1)⊗ (M ⊕N2)

Corollary 12.11. Let M and N be free modules of ranks m and n, respectively. Then M ⊗N has rank mn.

Proof.

Rm ⊗Rn ∼=
m⊕

i=1

R⊗
n⊕

i=1

R ∼= (R⊗R)mn ∼= Rmn.

How to show a module is not free: type up GD’s nice solution here.

13



13 Problem solutions

13.1 January 2003 # 2A

Problem 1. Let G be a group, with x an element of finite order in G. Let p be a prime. Prove that there
exist unique y and z in G such that (1) x = yz, (2) the order of y is a power of p, and (3) the order of z is
relatively prime to p.

Remark. This proof is due to Tommy Occhipinti.

Proof. Since we have little else to work with other than the finite order of x, let m = |x|. To split up m, we
could use Euclidean division to obtain m = qp+ r, or we could factor m into m = apk where a is relatively
prime to p. The latter approach sounds more promising since it gives us the phrase “relatively prime”. Since
xapk

= 1, xa has order pk, and xpk

has order a. But these don’t give us y and z right away: the product of
xa and xpk

isn’t necessarily 1, and furthermore these are not the only elements of those respective orders:
(xia)pk

= 1 for all integers i (where we may take ia mod m). Likewise, (xjpk

)a = 1 for all j.

Since
xiaxjpk

= xia+jpk

= 1,

we have
ia+ jpk ≡ 0 (mod m).

Since a and pk are relatively prime by hypothesis, we can use the Chinese Remainder Theorem (suggested
by the phrase “mod m” above) to solve for unique i and j.

xxx to do: this shows orders divide a and pk . . . . Also we have shown uniqueness inside 〈x〉; need to show
uniqueness in all of G.

13.2 January 2006

Problem 2. Show that any group of order 4n+ 2, for integer n, contains a subgroup of index 2.

Remark. The idea of the following proof is due to Dinesh Thakur and Tommy Occhipinti.

Proof. Let G be such a group. Any subgroup of index 2 is normal. When we want to find a normal subgroup,
we should always think of the kernel of a homomorphism, since when you have one, you have the other. The
trick is to find such a homomorphism.

A familiar map with image having order 2 is the parity map on Sn: if we had a symmetric group and if we
had an element of odd parity, we’d be done. Here, we don’t have a symmetric group. Not quite!

Consider the Cayley left representation of G. (That is, we send G injectively into SG where G acts on itself
by left multiplication. This sounds fancy, but just think of a Cayley table (multiplication table) for a group.
Recall that the rows of these tables are always permutations of G; also, in each row and each column, each
element appears only once.)

Since 2 divides the order of G, by Cauchy’s theorem there exists an element of order 2 in G. Call it σ. By
the remark in the preceding paragraph, the image of σ has no fixed points. Since it is of order 2, it must
therefore be the product of 2n+1 transpositions. This is an odd number, and therefore the parity of σ must
be odd.

14



Now consider the parity map from SG to {±1}. Since we just showed that SG has an odd permutation, the
image of the parity map is {±1}, not just {1}. By the first group homomorphism theorem, the kernel of the
parity map must have index 2.

13.3 A nice fact

Here is something which came up during summer 2006 qual prep. I found an old, second-hand proof of it
and thought I’d type it up for future reference.

Proposition 13.1. Let G be a group with center Z(G). If G/Z(G) is cyclic, G is abelian.

Proof. Since G/Z(G) is cyclic, let πZ(G) be a generator of the quotient group. Let g1, g2 be arbitrary
elements of G, so g1Z(G), g2Z(G) are arbitrary elements of G/Z(G). Since G/Z(G) is cyclic, g1Z(G) =
πiZ(G) and g2Z(G) = πjZ(G) for some integer i, j from which π−ig1 ∈ Z(G) and π−jg2 ∈ Z(G). Then for
some z1, z2 ∈ Z(G), π−1g1 = z1 and π−jg2 = z2. Then

g1 = πiz1

g2 = πjz2

g1g2 = πiz1π
jz2

= πiπjz1z2 since z1, z2 ∈ Z(G)
= πi+jz1z2

g2g1 = πjz2π
iz1

= πjπiz2z1 since z1, z2 ∈ Z(G)
= πi+jz1z2

= g2g1

Since g1, g2 were arbitrary in G and since they commute, G is abelian.
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