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Abstract

The following are some problem solutions from a course in stochastic differential equations I took

from Jan Wehr in spring 2008 at the University of Arizona. Here I collect various topics related to

the Itō formula: statement of the formula, special cases, integration techniques, and solutions to some

interesting SDEs. For the latter, I include analytical results as well as plots obtained from numerical

simulations.
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1 Reference

Before presenting problem solutions, I will first tabulate some results for ready reference. The following
are collected from [Øks] and from my problem solutions, using definitions and notation as in [Øks]. See
also [GS] and/or [Law] for more background information on Brownian motion, martingales, and stochastic
differential equations.

1.1 The Itō formula in one dimension

Proposition 1.1. If

dXt = e(Xt, t) dt+ f(Xt, t) dbt (1.1)

is an Itō process and
y = g(t, x)

is a C2 map from [0,+∞)× R to R, then
Yt = g(t,Xt)

is again an Itō process with

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) dXt +

1

2

∂2g

∂x2
(t,Xt) dX

2
t . (1.2)

Remark. Recall that we use the Itō calculus rules

db2t = dt, dt2 = 0, dt dbt = 0

when expanding dX2
t .

Remark. If we expand dXt (equation 1.1) into 1.2, we obtain an alternate expression

dX2
t = e2 dt2 + 2ef dt dbt + f2db2t = f2dt (1.3)

dYt =
∂g

∂t
(t,Xt) dt+

∂g

∂x
(t,Xt) (e dt+ f dbt) +

f2

2

∂2g

∂x2
(t,Xt) dt (1.4)

=

(

∂g

∂t
(t,Xt) + e

∂g

∂x
(t,Xt) +

f2

2

∂2g

∂x2
(t,Xt)

)

dt+ f
∂g

∂x
(t,Xt) dbt. (1.5)

The following two cases appear more often in the problem solutions than the general statement of proposition
1.1, so they are worth writing down to relieve the brain of the task of error-prone on-the-fly relabeling.

Proposition 1.2. Special case with e = 0 and f = 1: If x = g(t, u) is C2 then

Xt = g(t, bt)

is an Itō process with

dXt =
∂g

∂t
(t, bt) dt+

∂g

∂u
(t, bt) dXt +

1

2

∂2g

∂u2
(t, bt) dX

2
t (1.6)

=

(

∂g

∂t
(t, bt) +

1

2

∂2g

∂u2
(t, bt)

)

dt+
∂g

∂u
(t, bt) dbt. (1.7)

Proposition 1.3. Special case with e = 0 and f = 1 and no explicit time dependence: If

Xt = g(bt)

then

dXt =
1

2

∂2g

∂u2
(bt) dt+

∂g

∂u
(bt) dbt. (1.8)
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1.2 The Itō formula in higher dimensions

Proposition 1.4. Let









dX
(1)
t
...

dX
(n)
t









=







u1 dt
...

un dt






+







v1,1 · · · v1,m
...

...
vn,1 · · · vn,m















db
(1)
t
...

db
(m)
t









,

i.e. in matrix notation
dXt = u dt+V dbt.

(This is called am n-dimensional Itō process.) Let g : [0,+∞)× R
n → R

p be a C2 map:







y1
...
yp






=







g1(t,x)
...

gp(t,x)






=







g1(t, x1, . . . , xn)
...

gp(t, x1, . . . , xn)






.

Then
Yt = g(t,Xt)

is again an Itō process with kth component (for k = 1, . . . , p)

dY
(k)
t =

∂g

∂t
(t,Xt) dt+

n
∑

i=1

∂gk
∂xi

(t,Xt) dX
(i)
t +

1

2

n
∑

i,j=1

∂2gk
∂xi∂xj

(t,Xt) dX
(i)
t dX

(j)
t .

Remark. Recall that we use the Itō calculus rules

db
(i)
t db

(j)
t = δij , dt2 = 0, dt db

(i)
t = 0

when expanding dX
(i)
t dX

(j)
t .

Again, there is a special case when the input Itō process is simply n-dimensional Brownian motion; again,
it is worth writing down as such since this case arises often.

Proposition 1.5. Let g : R+ × R
m → R

n be a C2 map:







x1

...
xn






=







g1(t,u)
...

gn(t,u)






=







g1(t, u1, . . . , um)
...

gn(t, u1, . . . , um)






.

Then
Xt = g(t,bt)

is again an Itō process with kth component (for k = 1, . . . , n)

dX
(k)
t =

∂g

∂t
(t,bt) dt+

m
∑

i=1

∂gk
∂ui

(t,bt) db
(i)
t +

1

2

m
∑

i,j=1

∂2gk
∂ui∂uj

(t,bt) db
(i)
t db

(j)
t .
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1.3 The Itō formula from two dimensions to one

Proposition 1.6. Let g : R+ × R
2 → R be a C2 map

z = g(t, x, y).

Then
Zt = g(t,Xt, Yt)

is again an Itō process with

dZt =
∂g

∂t
(t,Xt, Yt) dt+

∂g

∂x
(t,Xt, Yt) dXt +

∂g

∂y
(t,Xt, Yt) dYt

+
1

2

∂2g

∂x2
(t,Xt, Yt) dX

2
t +

1

2

∂2g

∂y2
(t,Xt, Yt) dY

2
t +

∂2g

∂x∂y
(t,Xt, Yt) dXt dYt.

1.4 A derivation of the one-dimensional Itō formula

This is not a proof (see e.g. [Øks] section 4.1) — rather, it is a heuristic discussion intended to remind me
why which terms appear where.

• Start with
dXt = e(Xt, t) dt+ f(Xt, t) dbt.

• Consider
Yt = g(Xt, t).

• We need to show (using the formulation of equation 1.3)

dYt =

(

∂g

∂t
(t,Xt) + e

∂g

∂x
(t,Xt) +

f2

2

∂2g

∂x2
(t,Xt)

)

dt+ f
∂g

∂x
(t,Xt) dbt.

• Using the shorthand partial-derivative notation gt = ∂g/∂t etc., Taylor-expand dY as

dY = gt dt+ gx dX +
gtt
2

dt2 +
gxx
2

dX2 + gtx dt dX + higher order terms

= gt dt+ gx(e dt+ f dbt) +
gtt
2

dt2 +
gxx
2

(e dt+ f dbt)
2 + gtx dt(e dt+ f dbt) + . . . .

• Use dt2 = 0, dt dbt = 0, db2t = dt:

dY = gt dt+ gx(e dt+ f dbt) +
gxx
2

f2 dt

= gt dt+ e gx dt+ f2 gxx
2

dt+ f gx dbt

=
(

gt + e gx + f2 gxx
2

)

dt+ f gx dbt.
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1.5 The stochastic product rule

Proposition 1.7. Let Xt, Yt be Itō processes. Then

d(Xt Yt) = Xt dYt + Yt dXt + dXt dYt.

Proof. Using the Itō formula in the form of proposition 1.6 with g(x, y) = xy, we have

∂g

∂t
= 0,

∂g

∂x
= y,

∂g

∂y
= x,

∂2g

∂x2
= 0,

∂2g

∂y2
= 0, and

∂2g

∂x∂y
= 1.

Then
d(Xt Yt) = Yt dXt +Xt dYt + dXt dYt.

1.6 Stochastic integration by parts

Proposition 1.8. For Itō processes Xt and Yt,

∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

Ys dXs −
∫ t

0

dXs dYs.

Proof. Using the stochastic product rule (proposition 1.7), we have

d(Xt Yt) = Xt dYt + Yt dXt + dXt dYt

Xt dYt = d(Xt Yt)− Yt dXt − dXt dYt.

Integrating from 0 to t gives

∫ t

0

Xs dYs =

∫ t

0

d(Xs Ys)−
∫ t

0

Ys dXs −
∫ t

0

dXs dYs

= XtYt −X0Y0 −
∫ t

0

Ys dXs −
∫ t

0

dXs dYs.

Corollary 1.9. For ft not depending on bt, we have

∫ t

0

fs dbs = ftbt −
∫ t

0

bs dfs.

Proof. Putting Xt = ft and Yt = bt, the proposition gives

∫ t

0

fs dbs = ftbt −
∫ t

0

bs dfs −
∫ t

0

dfs dbs

since b0 = 0. By the Itō calculus rule dt dbt = 0, the last integral vanishes as long as there is no dbt in
dft.
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1.7 The Itō isometry

Proposition 1.10. For all f such that the Itō integral is defined,

E

[

(∫ t2

t1

fs dbs

)2
]

= E

[∫ t2

t1

f2
s ds

]

.

1.8 Expectation of integrals

Proposition 1.11. For all f such that the Itō integral is defined,

E

[∫ t2

t1

fsdbs

]

= 0.

Proof. This is property (iii) on p. 30 of Øksendahl. The proof is quick for step functions, since

E[c bt] = cE[ bt] = 0

on each piece; for the general case, one takes limits of step functions.
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2 Damped Brownian motion (problem 1.5a)

Prove that

Xt =
bt

1 + t
solves

dXt =
−1

1 + t
Xt dt+

1

1 + t
dbt.

Proof. Use the Itō formula in the form of proposition 1.2 with

g(t, x) =
x

1 + t
.

We have
∂g

∂t
=

−x

(1 + t)2
,

∂g

∂x
=

1

1 + t
, and

∂2g

∂x2
= 0.

Then

dXt =
−bt

(1 + t)2
dt+

dbt
1 + t

=
−1

1 + t
Xt dt+

1

1 + t
dbt.

Figure 1 shows five realizations of Xt with t from 0 to 10 in steps of 0.005. The exact solutions and
approximate solutions (using naive a first-order Euler method) are both plotted, but are indistinguishable
at this scale.

Python source code for all solutions plotted in this document may be found in the directory

http://math.arizona.edu/~kerl/doc/565C/code/

I will not include source code for each problem. Here, however, is the Python code for this problem: this
gives the flavor of the numerical approach.

import random # For random.gauss: generation of normal deviates

from math import * # For sqrt

T = 10.0 # End time

nt = 2000 # Number of mesh points

dt = T/nt # Time step

t = 0.0 # Initial time

Bt = 0.0 # Initial value of Brownian motion

Xexact = Bt / (1+t) # Initial exact solution

Xapprox = Bt / (1+t) # Initial approximate solution

while (t <= T):

Xexact = Bt / (1+t)

print "%11.7f %11.7f %11.7f %9.3e" % (t, Xexact, Xapprox, Xexact-Xapprox)

dB = random.gauss(0, sqrt(dt))

# First-order Euler update:

Xapprox += -1/(1+t) * Xapprox * dt + 1/(1+t) * dB

Bt += dB; t += dt

10
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Figure 1: Problem 1.5.a: Xt = bt/(1 + t).

11



3 Brownian motion on an ellipse (problem 1.5b)

Let

Xt = A cos(bt)

Yt = B sin(bt),

where A,B > 0. Show that these solve

dXt = −1

2
Xt dt−

A

B
Yt dbt

dYt = −1

2
Yt dt+

B

A
Xt dbt.

Proof. Use the Itō formula (once for Xt and once for Yt) in the form of proposition 1.5 with m = 1, n = 2,
and

g(t, x) = A cos(x)

h(t, x) = B sin(x).

0.0 0.5 1.0 1.5 2.0

t

-0.5

0.0

0.5

1.0

1.5

2.0
Ellipse

exact
approx.
error

Figure 2: Problem 1.5.b: Cosine part of Brownian motion on an ellipse with A = 2 and B = 3.

12



We have

∂g

∂t
= 0,

∂h

∂t
= 0,

∂g

∂x
= −A sin(x),

∂h

∂x
= B cos(x),

∂2g

∂x2
= −A cos(x),

∂2h

∂x2
= −B sin(x).

Then

dXt = −A

2
cos(bt) dt−A sin(bt) dbt

dYt = −B

2
sin(bt) dt+B cos(bt) dbt

dXt = −1

2
Xt dt−

A

B
Yt dbt

dYt = −1

2
Yt dt+

B

A
Xt dbt.

Figure 2 shows one realization of Xt with t from 0 to 2 in steps of 0.0001, with A = 2 and B = 3. The
approximate solution is again a naive first-order Euler; the error control is poor here. One may take this as an
advertisement for higher-order numerical methods, and/or as an advertisement for the value of closed-form
solutions.
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4 Exponential models with noise (problem 1.5.c)

4.1 Exponential growth with noise (problem 1.5.c.i)

Solve the equation
dXt = Xt dt+ dbt

with an arbitrary constant initial condition X0 = c.

We may try the integrating factor e−t and compare with d(e−tXt). The equation to be solved becomes

e−t dXt = e−tXt dt+ e−t dbt.

On the other hand, applying the stochastic product rule (1.7), we have

d(e−tXt) = d(e−t)Xt + e−tdXt + d(e−t)dXt

= −e−tXtdt+ e−t(Xt dt+ dbt)− e−t dt(Xt dt+ dbt)

= −e−tXt dt+ e−tXt dt+ e−tdbt − e−tXtdt
2 − e−tdt dbt

= e−t dbt.

Integrating both sides, we have

∫ t

0

d(e−sXs) =

∫ t

0

e−s dbs

e−tXt −X0 =

∫ t

0

e−s dbs

e−tXt = c+

∫ t

0

e−s dbs

Xt = cet + et
∫ t

0

e−s dbs.

Figure 3 shows five realizations of Xt with t from 0 to 2 in steps of 0.001. Here, the exact and approximate
solutions are indistinguishable. The expected value is also shown. This is

E[Xt] = E[cet] + E

[

et
∫ t

0

e−s dbs

]

= cet

using the non-stochasticity of the first term and proposition 1.11 for the second term.

4.2 Exponential decay with decaying noise (problem 1.5.c.ii)

Solve the equation
dXt = −Xt dt+ e−tdbt

with an arbitrary constant initial condition X0 = c.

We may try the integrating factor et and compare with d(etXt). The equation to be solved becomes

et dXt = −etXt dt+ dbt.
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Figure 3: Problem 1.5.c.i: dXt = Xt dt+ dbt, along with E[Xt].
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Figure 4: Problem 1.5.c.ii: dXt = −Xt dt+ e−tdbt, along with E[Xt].
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Applying the stochastic product rule (1.7), we have

d(etXt) = etXtdt+ et dXt + et dt dXt

= etXt dt+ et(−Xt dt+ e−t dbt) + et dt(−Xt dt+ e−t dbt)

= etXt dt− etXt dt+ dbt

= dbt.

Integrating both sides, we have

∫ t

0

d(esXs) =

∫ t

0

dbs

etXt = X0 = bt − b0

Xt = (c+ bt)e
−t.

Figure 4 shows five realizations of Xt with t from 0 to 10 in steps of 0.001. Here, the exact and approximate
solutions are indistinguishable. The expectation E[Xt] is also shown. This is

E[Xt] = E[ce−t] + E[bte
−t] = ce−t

since bt has mean 0 for all t.
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5 Brownian bridges (problem 1.5.d)

Part (i): Verify that the process

Yt = A(1 − t) +Bt+ (1 − t)

∫ t

0

dbs
1− s

, 0 ≤ t < 1,

is a solution of

dYt =
B − Yt

1− t
dt+ dbt, 0 ≤ t < 1, Y0 = A.

Differentiating the first equation, we have

dYt = Ad(1− t) +B dt+ d

(

(1− t)

∫ t

0

dbs
1− s

)

= (B −A)dt+ d

(

(1− t)

∫ t

0

dbs
1− s

)

.

Using the stochastic product rule requires taking d of the integral. I want to use the second fundamental
theorem of calculus, but that applies to Lebesgue integrals; I don’t know how to apply it to a stochastic
integral. In order to convert from the latter to the former, I will use integration by parts (proposition 1.9),
namely,

∫ t

0

fs dbs = ftbt −
∫ t

0

bs dfs.

Here f(s) = (1− s)−1 and dfs = ds/(1− s)2. Thus

∫ t

0

dbs
1− s

=
bt

1− t
−
∫ t

0

bs ds

(1− s)2
.

Then

d

∫ t

0

dbs
1− s

= d

(

bt
1− t

)

− d

∫ t

0

bs ds

(1− s)2

=
dbt
1− t

+
bt dt

(1− t)2
+ dbt dt−

bt dt

(1− t)2

=
dbt
1− t

.

Returning to dYt we have

dYt = (B −A)dt− dt

∫ t

0

dbs
1− s

+ (1 − t) d

∫ t

0

dbs
1− s

− dt d

∫ t

0

dbs
1− s

= (B −A)dt− dt

∫ t

0

dbs
1− s

+ (1 − t)
dbt
1− t

− dt
dbt
1− t

= (B −A)dt− dt

∫ t

0

dbs
1− s

+ dbt.

I am asked to show

dYt =
B − Yt

1− t
dt+ dbt.

17



I need to show

B −A−
∫ t

0

dbs
1− s

=
B − Yt

1− t

which is true if

B(1 − t)−A(1 − t)− (1− t)

∫ t

0

dbs
1− s

= B − Yt

which is true if

B(1 − t)−A(1− t)− (1− t)

∫ t

0

dbs
1− s

= B −A(1 − t)−Bt− (1 − t)

∫ t

0

dbs
1− s

which is true if

B(1 − t)−A(1− t)− (1− t)

∫ t

0

dbs
1− s

= B −A(1 − t)−Bt− (1 − t)

∫ t

0

dbs
1− s

which is true.

Figure 5 shows twenty realizations of Yt with t from 0 to 1 in steps of 0.001. The approximate solutions are
plotted.
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Y
_
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Brownian bridges

Figure 5: Problem 1.5.d: Brownian bridges running from zero to zero in time one.

Part (ii): Show that limt→1 Yt = B with probability 1.

Proof. Since

Yt = A(1− t) +Bt+ (1− t)

∫ t

0

dbs
1− s

,

18



We have

lim
t→1

Yt = B + (1− t) lim
t→1

∫ t

0

dbs
1− s

.

The last term goes to zero as long as
∣

∣

∣

∣

∫ t

0

dbs
1− s

∣

∣

∣

∣

< ∞ w.p.1,

or at least if it goes to infinity slower than 1/(1− t).

Perhaps the Itō isometry (proposition 1.10) will help. With

fs =
1− t

1− s
,

we have

E

[

(1− t)2
(∫ t

0

dbs
1− s

)2
]

= E

[

(1− t)2
∫ t

0

ds

(1− s)2

]

.

But this is

E

[

(1− t)2
∫ t

0

ds

(1 − s)2

]

= (1 − t)2
t

1− t
= t(1− t) < ∞

by elementary calculus.

Part (iii): Find the mean and covariance of Yt for A = B = 0.

Here

Yt = (1− t)

∫ t

0

dbs
1− s

.

The variance is easily found — from part (ii), it is

E[Y 2
t ]− E[Yt]

2 = E[Y 2
t ] = t(1− t).

The mean is zero by proposition 1.11.

For the covariance, assume without loss of generality that s ≤ t. Then — with the key being to separate the
integral from 0 to t into an integral from 0 to s and another from s to t — we have

E[YsYt] = E

[

(1− s)(1− t)

∫ s

0

dbu
1− u

∫ t

0

dbv
1− v

]

= (1− s)(1− t)E

[

(∫ s

0

dbu
1− u

)2
]

+ (1− s)(1 − t)E

[∫ s

0

dbu
1− u

]

E

[∫ t

s

dbv
1− v

]

.

The second expectation factors due to independence of the events; the first expecattion is as found in part
(ii). Then we have

E[YsYt] = (1− s)(1 − t)
s

1− s

= s(1− t).

Note that for s = t I recover the variance that I obtained using Itō isometry: this is reassuring.

Part (iv): Verify that
Xt := bt − tb1, 0 ≤ t < 1,

has the same distribution as Yt.
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Proof. I will first compute the mean and covariance of Xt. These uniquely characterize Brownian motions;
I would hope they also uniquely characterize Brownian bridges. (Regardless, the exercise is good practice
for me.)

For the mean, we have
E[Xt] = E[bt − tb1] = 0− t · 0 = 0.

For the covariance, recalling that
E[bsbt] = s ∧ t

where s ∧ t is the minimum of s and t, we have

E[XsXt] = E[(bs − sb1)(bt − tb1)]

= E[bsbt]− E[tb1bs]− E[sb1bt] + E[stb21]

= s ∧ t− t(s ∧ 1)− s(t ∧ 1) + st

= s ∧ t− 2st+ st

= s ∧ t− st.

Now, if s ≤ t then this is s − st = s(1 − t), matching my result from part (iii). Happily, using the Xt

formulation of the bridge I get the more elegant expression s∧ t− st, which is valid whether s ≤ t or not —
an expression which I might not have so easily gotten using the Yt formulation.

Now, do these computations suffice to answer the original question? Do the zero-to-zero Brownian bridges
form a Gaussian family?
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6 Complex Brownian motion (problem 1.5.e)

Let (at, bt) be two-dimensional Brownian motion. The complex-valued function

ct = at + ibt

is called a complex Brownian motion. Let F be an entire analytic function. For Zt = F (ct), prove that

dZt = F ′(ct) dct.

Proof. Write
z = F (w)

in the form
x+ iy = g(u, v) + ih(u, v),

i.e. w = u+ iv, z = x+ iy, and F = g + ih. Then

Xt = g(at, bt)

Yt = h(at, bt).

Use the Itō formula in the form of proposition 1.5. Since ∂g/∂t and ∂h/∂t are zero, dat dbt is zero, and
da2t = db2t = dt, we have

dXt =
∂g

∂u
dat +

∂g

∂v
dbt +

1

2

(

∂2g

∂u2
+

∂2g

∂v2

)

dYt =
∂h

∂u
dat +

∂h

∂v
dbt +

1

2

(

∂2h

∂u2
+

∂2h

∂v2

)

.

Since F is entire analytic, its components g and h satisfy the Cauchy-Riemann equations

∂g

∂x
=

∂h

∂y
and

∂h

∂x
= −∂g

∂y
.

These in turn yield harmonicity of g and h:

∂2g

∂u2
+

∂2g

∂v2
=

∂2h

∂u2
+

∂2h

∂v2
= 0.

Thus

dXt =
∂g

∂u
dat +

∂g

∂v
dbt

dYt =
∂h

∂u
dat +

∂h

∂v
dbt

which is to say
dZt = F ′(ct) dct.

Figure 6 shows one realization of ct with t from 0 to 5 in steps of 0.0005.
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Figure 6: Problem 1.5.e: Complex Brownian motion.

7 Iterated stochastic integrals (problem 1.5.f)

The following is an important Itō formula for an iterated stochastic integral:

n!

∫ t

0

dbun

∫ un

0

dbun−1
· · ·
∫ u2

0

dbu1
= tn/2hn

(

bt√
t

)

,

where

hn(x) = (−1)ne
t
2

2

dn

dxn

(

e
−x

2

2

)

is the Hermite polynomial of degree n. Verify the formula for n = 0, 1, 2, 3.

Proof. First recall

h0(x) = 1,

h1(x) = x,

h2(x) = x2 − 1,

h3(x) = x3 − 3x.

Case n = 0: This is immediate, as 0! = 1.
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Case n = 1: The left-hand side is
∫ t

0

dbs = bt;

the right-hand side is

t1/2
bt√
t
= bt.

Case n = 2: The left-hand side is

2

∫ t

0

dbs

∫ s

0

dbr = 2

∫ t

0

dbs bs

= 2

(

1

2
b2t −

t

2

)

= b2t − t;

the right-hand side is

t

(

t

(

bt√
t

)2

− 1

)

= b2t − t.

I take it that
∫ t

0

dbs bs =
b2t − t

2

is well-known. However, I will re-derive it, as it illustrates the technique used below. Use the Itō formula in
the form of proposition 1.3. Guess

g(x) =
x2

2
,

so
∂g

∂x
= x and

∂2g

∂x2
= 1.

Then for
Xt = g(bt)

we have

dXt = d

(

b2t
2

)

=
1

2

∂2g

∂x2
dt+

∂g

∂x
dbt

=
1

2
dt+ bt dbt.

Integrating from 0 to t we have
∫ t

0

d

(

b2s
2

)

=
1

2

∫ t

0

ds+

∫ t

0

bs dbs

∫ t

0

bs dbs =
b2t
2

− t

2
.

Case n = 3: The left-hand side is

6

∫ t

0

dbs

∫ s

0

dbr

∫ r

0

dbq = 6

∫ t

0

dbs

∫ s

0

dbr br

= 3

∫ t

0

dbs(b
2
s − s)

= 3

∫ t

0

b2s dbs − 3

∫ t

0

s dbs.
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The right-hand side is

t3/2h3

(

bt√
t

)

= t3/2
(

bt√
t

)3

− t3/2
(

bt√
t

)

= b3t − t bt.

* * *

First we need to compute
∫ t

0

b2s dbs.

Proceeding as above and guessing

g(x) =
x3

3
,

we have
∂g

∂x
= x2 and

∂2g

∂x2
= 2x.

Then for
Xt = g(bt)

we have

dXt = d

(

b3t
3

)

=
1

2

∂2g

∂x2
dt+

∂g

∂x
dbt

= bt dt+ b2t dbt.

Integrating from 0 to t we have

∫ t

0

d

(

b3s
3

)

=

∫ t

0

bsds+

∫ t

0

b2s dbs

∫ t

0

b2s dbs =
b3t
3

−
∫ t

0

bs ds.

* * *

Next we need to compute
∫ t

0

s dbs.

Guessing
g(x) = tx

we have
∂g

∂t
= x,

∂g

∂x
= t, and

∂2g

∂x2
= 0.

Then for
Xt = g(t, bt)

we have

dXt = d(t bt) =

(

∂g

∂t
+

1

2

∂2g

∂x2

)

dt+
∂g

∂x
dbt

= bt dt+ t dbt.
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Integrating from 0 to t we have

∫ t

0

d(s bs) =

∫ t

0

bsds+

∫ t

0

s dbs

∫ t

0

s dbs = t bt −
∫ t

0

bs ds.

* * *

The left-hand side in the original equation to be verified now becomes

3

∫ t

0

b2s dbs − 3

∫ t

0

s dbs = b3t − 3

∫ t

0

bs ds− 3t bt + 3

∫ t

0

bs ds

= b3t − 3t bt.

The right-hand side is

t3/2
(

bt
t1/2

)3

− 3t3/2
(

bt
t1/2

)

= b3t − 3t bt

as desired.
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8 Exponential growth with multiple noise sources (problem 2.2)

Let c, α1, . . . , αn be constants; let bt =
(

b
(1)
t , . . . , b

(n)
t

)

be n-dimensional Brownian motion. Let

Xt = exp



ct+
n
∑

j=1

αjb
(j)
t



 .

Prove that

dXt =



c+
1

2

n
∑

j=1

α2
j



 Xt dt+Xt

n
∑

j=1

αj db
(j)
t .

Proof. Use the multidimensional Itō formula in the form of proposition 1.5. We have

g(t, u1, . . . , un) = ecteα1u1 · · · eαnun

∂g

∂t
(t, u1, . . . , un) = cg

∂g

∂xj
(t, u1, . . . , un) = αjg

∂g2

∂x2
j

(t, u1, . . . , un) = α2
jg.

Then

dXt =



cXt +
1

2

n
∑

j=1

α2
jXt



 dt+

n
∑

j=1

αjXt db
(j)
t

=



c+
1

2

n
∑

j=1

α2
j



Xt dt+Xt

n
∑

j=1

αj db
(j)
t .

26



9 Martingales (problem 2.3)

9.1 Problem 2.3.a

Prove that
Xt = et/2 cos(bt)

is a martingale with respect to the filtration of the Brownian motion bt.

First recall that a stochastic process is a martingale with respect to a filtration Fs if

E[Xt | Fs] = Xs.

This is an overblown, measure-theoretic way of obscuring the simple statement that, conditioned on Xs = a,
the expected value of Xt for times past s is a.

For a concrete example, consider the d’Alembert system. The time t is in discrete steps t = 0, 1, 2, . . .. One
random variable, Ct, is the outcome of a coin flip with probability p of heads where we encode heads as +1
and tails as −1. The second random variable is

Xt =

t
∑

s=0

Cs.

This represents the accumulated earnings of a gambler who, beginning with zero balance, plays a game
wherein he/she wins a dollar for each head and loses a dollar for each tail. Now suppose that at the sth step
the gambler has a balance of a = 100. (That is, condition on Xs = 100.) If the coin is fair, the expected
value of Xs+1 is (101 + 99)/2 = 100. Likewise E[Xs+2 = (102 + 2 · 100 + 98)/4 = 100 and so on. We say
that for t ≥ s, E[Xt|Xs = a] = a. One then generalizes this statement by considering not just one specific
value of a but instead all values of Xs: we collect all the a’s into a σ-algebra bag. We say

E[Xt | Fs] = Xs.

Last, note that if the coin has a probability p > 1/2 of heads, then the expected future earnings, conditioned
on the present balance, exceed the present balance. Similarly, if p < 1/2, then E[Xt | Fs] < Xs. The
d’Alembert system is a martingale if and only if the coin is fair.

Brownian motion is simply (in a very specific sense) the limiting case of the d’Alembert system. When
thinking of martingales with respect to the filtration of Brownian motion, I ask myself: for all processes Xt

which pass through a at time s, what is the expected value of those processes at subsequent times t — is
that expectation above, below, or at the current value a.

* * *

Returning to the original problem, recall two facts:

• If X is F -measurable, then E[X | F ] = X .

• If X is independent of F , then E[X | F ] = E[X ].

We split Xt into (Xt −Xs) +Xs. Then

E[Xt | Fs] = E[Xt −Xs | Fs] + E[Xs | Fs].
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Now Xt −Xs is independent of Fs and Xs is Fs-measurable. Thus

E[Xt | Fs] = E[Xt]− E[Xs] +Xs.

We will be done if we can show E[Xt] = E[Xs]. Figure 7 shows forty realizations of Xt for t from 0 to 2
in steps of 0.002. The figure suggests that E[Xt] = 1 for all t. I have computed, but have not included in
this paper, plots of ect cos(bt) for values of c above and below 0.5: for c < 0.5, the mean E[Xt] drops down
from 1 as t increases from 0 (and Xt is a supermartingale); for c > 0.5, E[Xt] rises from 1 (and Xt is a
submartingale). Also note from the figure that, for each t, values of Xt occur with less spread, but more
densely, above 1; they occur with more spread, but less densely, below 1. Thus the density function of Xt is
asymmetrical but nonetheless has mean 1 for all t.
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Figure 7: Problem 2.3.a: 40 realizations of et/2 cos(bt), with sample mean Xt and envelope curves ±et/2.

Since
E[et/2 cos(bt)] = et/2 E[cos(bt)],

I need to show that E[cos(bt)] = e−t/2. This is plausible intutively: at t = 0, bt is 0 and cos(bt) = 1. As t
increases slightly, the distribution of bt spreads a little above and below 0, so cos(bt) spreads a little below 1.
As t becomes quite large and the distribution of bt approaches uniformity on the real line, cos(bt) approaches
uniformity on [−1, 1] and so the expectation of the latter approaches 0. This matches the behavior of e−t/2

— as well as e−ct in general; I need to show what’s special about c = 1/2.

Since E[X ] =
∫

X dP for random variables X , and since the Law of the Unconscious Statistician tells me
E[f(X)] =

∫

f(X) dP , and since bt is normal with mean 0 and variance t, I can write down explicitly

E[cos(bt)] =
1

t
√
2π

∫ +∞

−∞

cos(x) e−
x
2

2t dx.
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To solve this, observe that cos(bt) = Re(eibt). Employing the complete-the-square trick which is usual for
Gaussian integrals, we have

E[cos(bt)] = Re(E[eibt ])

E[eibt ]) =
1

t
√
2π

∫ x=+∞

x=−∞

eixe−x2/2t dx

=
1

t
√
2π

∫ x=+∞

x=−∞

exp

[−1

2t

(

x2 − 2tix− t2 + t2
)

]

dx

=
et

2/2t

t
√
2π

∫ x=+∞

x=−∞

exp

[−1

2t
(x− ti)2

]

dx

=
et/2

t
√
2π

∫ x=+∞

x=−∞

exp

[−1

2t
(x− ti)

2

]

dx.

I am done as long as

Re

(∫ x=+∞

x=−∞

exp

[−1

2t
(x− ti)

2

]

dx

)

= t
√
2π.

9.2 Problem 2.3.b

Prove that
Xt = (bt + t) exp(−bt − t/2)

is a martingale with respect to the filtration of the Brownian motion bt.

Just as above, we have
E[Xt | Fs] = E[Xt]− E[Xs] +Xs;

again, it suffices to show that E[Xt] is constant along t.

Figure 8 shows forty realizations of Xt. Many values of Xt drop far below the horizontal axis and have been
clipped from the viewing window. Here Xt has much higher variance than in the previous problem, but it
appears (from multiple computational runs) that the sample mean approaches 0 for all t.

As in the previous problem, I can combine the Law of the Unconscious Statistician with the known density
function of bt to compute E[Xt]:

E[Xt] = E[(bt + t)e−bte−t/2]

= e−t/2E[(bt + t)e−bt ]

= e−t/2E[bt e
−bt ] + e−t/2E[t e−bt ].

One computes

E[bt e
−bt ] =

1

t
√
2π

∫ +∞

−∞

xe−xe−x2/2t dx

=
1

t
√
2π

[

−et/2
√

π

2
erf

(

t+ x√
2t

)

t3/2 − te−x2/2t−x

]x=+∞

x=−∞

= −
√
tet/2

since erf goes to ±1 as x → ±∞, respectively, and since e−x2/2t−x goes to 0 as x → ±∞.
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Figure 8: Problem 2.3.b: 40 realizations of (bt + t) exp(−bt − t/2) with sample mean Xt.

Likewise, one computes

E[t e−bt ] = tE[e−bt ]

=
1√
2π

∫ +∞

−∞

e−xe−x2/2t dx

=
1√
2π

[

et/2
√

π

2
erf

(

t+ x√
2t

)

t1/2
]x=+∞

x=−∞

=
√
tet/2.

Then

E[Xt] = e−t/2E[bt e
−bt ] + e−t/2E[t e−bt ]

= −e−t/2
√
tet/2 + e−t/2

√
tet/2

= 0

as desired.
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10 Mean-reverting Ornstein-Uhlenbeck process (problem 2.4)

Solve the mean-reverting Ornstein-Uhlenbeck equation:

dXt = (m−Xt) dt+ σ dbt

with real constant m and positive real constant σ. Compute the mean and variance of the solution, using
constant initial condition X0.

Since this is first-order, an integrating-factor approach is again a good guess:

et dXt = et(m−Xt) dt+ σet dbt

d(et Xt) = etXt dt+ et(m−Xt)dt+ σet dbt

= met dt+ σet dbt.

Integrating from 0 to t, we have

∫ t

0

d(es Xs) = m

∫ t

0

es ds+ σ

∫ t

0

es dbs

etXt −X0 = m(et − 1) + σ

∫ t

0

es dbs

Xt = X0e
−t +m(1− et) + σ

∫ t

0

es−t dbs.

The mean is

E[Xt] = X0e
−t +m(1− e−t) + σE

[∫ t

0

es−t dbs

]

= X0e
−t +m(1− e−t)

where the expectation of the integral vanishes by proposition 1.11.

For the variance, we first compute X2
t :

X2
t = X2

0e
−2t +m2(1 − e−t)2 + σ2

(∫ t

0

es−t dbs

)2

+ 2mX0e
−t(1 − e−t) + 2X0e

−tσ

∫ t

0

es−t dbs + 2mσ(1− e−t)

∫ t

0

es−t dbs.

The last two terms have zero expected value by proposition 1.11; the first, second, and fourth terms are
non-stochastic and are their own means. For the third term I can again use the Itō isometry (proposition
1.10) with fs = es−t:

E

[

e−2t

(∫ t

0

es dbs

)2
]

= E

[

e−2t

∫ t

0

e2s ds

]

= e−2t

∫ t

0

e2s ds

=
e−2t

2

[

e2s
]s=t

s=0
=

e−2t

2
[e2t − 1] =

1− e−2t

2
.

Combining terms, we have

E[X2
t ] = X2

0e
−2t +m2(1 − e−t)2 + 2mX0(e

−t − e−2t) +
σ2

2
(1− e−2t).
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Then

Var(Xt) = E[X2
t ]− E[Xt]

2

= X2
0e

−2t +m2(1− e−t)2 + 2mX0(e
−t − e−2t) +

σ2

2
(1− e−2t)

−X2
0e

−2t −m2(1 − e−t)2 − 2mX0(e
−t − e−2t)

=
σ2

2
(1− e−2t).

The interpretation of the mean and variance is that the process starts surely at X0, then moves toward m:
specifically, the initial state X0 decays exponentially while the difference from the steady state m decays
exponentially. Meanwhile the standard deviation of the process starts at zero, then increases to a steady-state
value σ/

√
2.

Figure 9 shows six realizations of Xt with t from 0 to 10 in steps of 0.01. The parameters are X0 = 1.7,
m = 2, and σ = 0.05. In addition to the six realizations of the process, I also plot the mean E[Xt], along
with the mean plus or minus one and two standard deviations.
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Figure 9: Problem 2.4: The mean-reverting Ornstein-Uhlenbeck process. M = E[Xt]; S = Var(Xt)
1/2.
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11 Stochastically forced vibrating string (problem 2.5)

Solve the stochastically forced vibrating-string equation:

dXt = Yt dt+ αdat

dYt = −Xt dt+ β dbt

where α, β are real consants and at, bt are independent Brownian motions.

On scratch paper, I tried using a pair of integrating factors — one for each equation — but this did not
result in any simplification. Following a hint in [Øks], I realize that we may write

(

dXt

dYt

)

=

(

0 1
−1 0

)(

Xt dt
Yt dt

)

+

(

αdat
β dbt

)

,

and that the appropriate integrating factor for this coupled (hence second-order) equation is e−At where

A =

(

0 1
−1 0

)

.

Writing down the power-series expansion

e−At =

∞
∑

n=0

An

n!

and collecting even and odd terms, one recognizes the Maclaurin series for sine and cosine in the matrix
elements, leading to

e−At =

(

cos(t) − sin(t)
sin(t) cos(t)

)

.

Multiplying the coupled equations through by the integrating factor gives

(

cos(t) − sin(t)
sin(t) cos(t)

)(

dXt

dYt

)

=

(

cos(t) − sin(t)
sin(t) cos(t)

)(

0 1
−1 0

)(

Xt dt
Yt dt

)

+

(

cos(t) − sin(t)
sin(t) cos(t)

)(

αdat
β dbt

)

(

cos(t) dXt − sin(t) dYt

sin(t) dXt + cos(t) dYt

)

=

(

sin(t) cos(t)
− cos(t) sin(t)

)(

Xt dt
Yt dt

)

+

(

α cos(t) dat − β sin(t) dbt
α sin(t) dat + β cos(t) dbt

)

(

cos(t) dXt − sin(t) dYt

sin(t) dXt + cos(t) dYt

)

=

(

sin(t)Xt + cos(t)Yt

− cos(t)Xt + sin(t)Yt

)

+

(

α cos(t) dat − β sin(t) dbt
α sin(t) dat + β cos(t) dbt

)

. (11.1)

Now, as in the one-dimensional problems above, we need to find

d

(

e−At

(

Xt

Yt

))

= d

(

cos(t)Xt − sin(t)Yt

sin(t)Xt + cos(t)Yt

)

.

To use the Itō formula (proposition 1.4), write

g(t, x, y) = cos(t)x − sin(t)y

h(t, x, y) = sin(t)x+ cos(t)y.
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Then

∂g

∂t
= − sin(t)x − cos(t)y,

∂g

∂x
= cos(t),

∂g

∂y
= − sin(t),

∂h

∂t
= cos(t)x − sin(t)y,

∂h

∂x
= sin(t),

∂h

∂y
= cos(t),

and all second partials in x and/or y are zero. Then

dg =
dh =

− sin(t)Xt dt − cos(t)Yt dt + cos(t) dXt − sint dYt

cos(t)Xt dt − sin(t)Yt dt + sin(t) dXt + cost dYt.
(11.2)

Now we can re-write equation 11.1 as

(

cos(t) dXt − sin(t) dYt

sin(t) dXt + cos(t) dYt

)

−
(

sin(t)Xt dt+ cos(t)Yt dt
− cos(t)Xt dt+ sin(t)Yt dt

)

=

(

α cos(t) dat − β sin(t) dbt
α sin(t) dat + β cos(t) dbt

)

.

Using equation 11.2, we have

d

(

e−At

(

Xt

Yt

))

=

(

α cos(t) dat − β sin(t) dbt
α sin(t) dat + β cos(t) dbt

)

.

Integrating both sides with respect to t, we obtain

∫ t

0

d

(

e−As

(

Xs

Ys

))

=

(

α
∫ t

0
cos(s) das − β

∫ t

0
sin(s) dbs

α
∫ t

0
sin(s) das + β

∫ t

0
cos(s) dbs

)

.

e−At

(

Xt

Yt

)

=

(

X0

Y0

)

+

(

α
∫ t

0 cos(s) das − β
∫ t

0 sin(s) dbs
α
∫ t

0 sin(s) das + β
∫ t

0 cos(s) dbs

)

.

(

Xt

Yt

)

=

(

cos(t) sin(t)
− sin(t) cos(t)

)

(

X0 + α
∫ t

0
cos(s) das − β

∫ t

0
sin(s) dbs

Y0 + α
∫ t

0
sin(s) das + β

∫ t

0
cos(s) dbs

)

.

Figure 10 shows a realization of Xt and Yt for t from 0 to 100 in steps of 0.01 and α = β = 0.01: the upper
plot shows shows Xt Yt as functions of time, while the lower plot is a phase portrait. Figure 11 is similar,
but with α = β = 0.1.
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Figure 10: Problem 2.5: Weakly stochastically forced vibrating string.
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Figure 11: Problem 2.5: Strongly stochastically forced vibrating string.
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12 The Feynman-Kac formula

The following was not contained in Dr. Wehr’s problem set, but (as I write this section in the summer
of 2008) is useful background material for my comprehensive exam. The proof is adapted from [Law],
with missing steps filled in and notation changed to match that used in this paper. (See also [Øks] where
uniqueness of the solution is proved.)

Proposition 12.1. The solution to the partial differential equation

∂φ

∂t
(t, x) =

f(x)2

2

∂2φ

∂x2
(t, x) + e(x)

∂φ

∂x
(t, x) + g(x)φ(t, x) (12.1)

with initial condition
φ(0, x) = h(x)

is

φ(t, x) = E
x

[

h(Xt) exp

{∫ t

0

g(Xu) du

}]

, (12.2)

where Xt satisfies
dXt = e(Xt) dt+ f(Xt) dbt

and E
x[Y ] denotes E[Y | X0 = x]. (We assume that this expectation exists for all t, x.)

Remark 12.2. We call Xt a time homogeneous diffusion, or simply a diffusion, since e and f depend on Xt

but not on t directly. Note that Xt is Markovian.

Proof. Let φ(t, x) be given by equation 12.2. We will show that it satisfies 12.1. For brevity, write

Jt = exp

{∫ t

0

g(Xu) du

}

.

Note that for s < t,

Jt = exp

{∫ t

0

g(Xu) du

}

= exp

{∫ s

0

g(Xu) du

}

exp

{∫ t

s

g(Xu) du

}

= Js exp

{∫ t

s

g(Xu) du

}

.

If s < t then, since Js is F -measurable,

E[h(Xt)Jt | Fs] = JsE

[

h(Xt) exp

{∫ t

s

g(Xu) du

}

| Fs

]

= Jsφ(t− s,Xs).

Call this quantity Ms. We claim that it is a martingale for 0 ≤ s < t. To see this, suppose r < s. Then

E

[

E

[

h(Xt)Jt | Fs

]

| Fr

]

= E[h(Xt)Jt | Fr].

Using the stochastic product rule (proposition 1.7), we have

dMs = Js dφ(t− s,Xs) + dJs φ(t − s,Xs) + dJs dφ(t− s,Xs).
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For the first differential, using the chain rule and the second fundamental theorem of calculus,

dJs =
∂

∂s

(

exp

{∫ s

0

g(Xu) du

})

ds = exp

{∫ s

0

g(Xu) du

}

g(Xs) ds = Js g(Xs) ds.

For the second differential, applying the Itō formula (assuming sufficient differentiability) in the form of
equation 1.3 to Ys = φ(t− s,Xs), we obtain

dφ(t − s,Xs) =

(

∂φ

∂s
(t− s,Xs) + e(Xs)

∂φ

∂x
(t− s,Xs) +

f(Xs)
2

2

∂2φ

∂x2
(t− s,Xs)

)

ds

+ f(Xs)
∂φ

∂x
(t− s,Xs) dbs.

The third product term dJs dφ(t − s,Xs) is zero since its differentials are of the form ds2 and ds dbs. Then

dMs = Js

(

∂φ

∂s
(t− s,Xs) + e(Xs)

∂φ

∂x
(t− s,Xs) +

f(Xs)
2

2

∂2φ

∂x2
(t− s,Xs)

)

ds

+ Js f(Xs)
∂φ

∂x
(t− s,Xs) dbs + Js g(Xs)φ(t − s,Xs) ds.

Since Ms is a martingale, the ds terms must sum to zero. There is a common factor of Js, but the exponential
function is everywhere non-zero so the following four terms must be zero:

0 =
∂φ

∂s
(t− s,Xs) + e(Xs)

∂φ

∂x
(t− s,Xs) +

f(Xs)
2

2

∂2φ

∂x2
(t− s,Xs) + g(Xs)φ(t− s,Xs)

−∂φ

∂s
(t− s,Xs) =

f(Xs)
2

2

∂2φ

∂x2
(t− s,Xs) + e(Xs)

∂φ

∂s
(t− s,Xs) + g(Xs)φ(t − s,Xs).

Putting s = 0 and recalling X0 = x, we are done:

∂φ

∂t
(t, x) =

f(x)2

2

∂2φ

∂x2
(t, x) + e(x)

∂φ

∂x
(t, x) + g(x)φ(t, x).

Figure 12 plots equation 12.2 for x from −2 to 2 in steps of 0.1, for t = 0, 1, 2, f =
√
2, e = 1, g = 0, and

h(x) =
1

1 + x2
.

That is, we are estimating the solution to

∂φ

∂t
(t, x) =

∂2φ

∂x2
(t, x) +

∂φ

∂x
(t, x).

The expectations are taken over 10, 000 Brownian motions for each x; these are stepped with ∆t = 0.01.
Since the coefficient on ∂2φ/∂x2 is nonzero, we expect the initial condition to spread over time; since the
coefficient on ∂φ/∂x is nonzero, we expect drift.
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Figure 12: Feynman-Kac solution for diffusion with drift.

13 Generators and forward equations

As with section 12, the following was not contained in Dr. Wehr’s problem set, but (as I write this section
in the summer of 2008) is useful background material for my comprehensive exam.

The plan of this section is as follows:

(i) Present an Ornstein-Uhlenback process which is will be useful for comparing the generator and the
forward equation.

(ii) Define the generator, and compute it for the O-U process.

(iii) Define the forward equation, and compute it for the O-U process.

(iv) Compare and contrast.

13.1 Scaled Brownian motion, and another Ornstein-Uhlenbeck process

Definition 13.1. Scaled Brownian motion is

Yt = σbt.

Definition 13.2. The decay-controlled Ornstein-Uhlenbeck process satisfies the SDE

dZt = −β Zt dt+ σ dbt.
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Compare this DCOU process with the mean-reverting Ornstein-Uhlenbeck (MROU) process in section 10.
I will not include plots here. The DCOU decays to mean 0; the parameter β allows one to control the
quickness of that decay.

To solve it, we try the integrating factor eβt:

eβt dZt = −βeβt Zt dt+ σeβt dbt

d(eβtZt) = βeβtZt dt− βeβtZt dt+ σeβt dbt = σeβt dbt
∫ t

0

eβsZs ds = σ

∫ t

0

eβs dbs

Zt = Z0e
−βt + σ

∫ t

0

e−β(t−s) dbs.

Doing computations similar to those in section 10, we find that Zt has mean and variance

E[Zt] = Z0e
−βt

Var(Zt) =
σ2

2β
(1− e−2βt).

Definition 13.3. For a stochastic process

dXt = e(Xt, t) dt+ f(Xt, t) dbt,

the instantaneous mean is e(Xt, t) and the instantaneous variance is f(Xt, t).

Thus, scaled Brownian motion has instantaneous mean 0 and instantaneous variance σ2, but mean 0 and
variance σ2t. The DCOU process has instantaneous mean−βZt and instantaneous variance σ2, but mean and
variance as shown above. These computations make it clear that the instantaneous mean and instantaneous
variance of a process are distinct from its mean and variance.

13.2 Generator of a diffusion process

Definition 13.4. Let the stochastic process Xt be defined by the SDE

dXt = e(Xt, t) dt+ f(Xt, t) dbt.

As in remark 12.2, we say that Xt is a diffusion process if e and f are time-independent, i.e. if we may
write

dXt = e(Xt) dt+ f(Xt) dbt.

Definition 13.5. Let Xt be a diffusion process as above. Let φ(Xt) be some function of the process. (In
mathematical physics, φ might be some observable.) Define

ft(x) = E
x[φ(Xt)],

where
E
x[·] = E[· | X0 = x].

Then ft(x) satisfies
∂ft
∂t

= Lft
where L is a differential operator called the generator of the process Xt.
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Here we compute the generators of scaled Brownian motion and the DCOU process. As shown in [Øks], the
generator L of a diffusion process

dXt = e(Xt) dt+ f(Xt) dbt

is

L = e(x)
∂

∂x
+

σ2

2

∂2

∂x2
.

For scaled Brownian motion, which satisfies dXt = dbt so e = 0 and f = σ, we have

LB =
σ2

2

∂2

∂x2
. (13.1)

(In d ≥ 1 dimensions, this becomes 1
2∇2.) For the DCOU process, with e(x) = −βx and f(x) = σ, we have

LDCOU = −βx
∂

∂x
+

σ2

2

∂2

∂x2
. (13.2)

13.3 The forward equation

Proposition 13.6. Let Xt be a stochastic process (not necessarily a diffusion) satisfying the SDE

dXt = e(Xt, t) dt+ f(Xt, t) dbt,

with initial condition distributed according to

X0(x) ∼ g(x, 0).

Then the density g(x, t) of Xt satisfies the forward equation or Fokker-Planck equation of Xt which
solves

∂g(x, t)

∂t
= − ∂

∂x
[e(x, t)g(x, t)] +

∂2

∂x2

[

f(x, t)2

2
g(x, t)

]

.

Remark. The forward equation governs the time evolution of the density: it is the PDE of the PDF.

Remark. The term e(x, t) is called the drift of the process; the term 1
2f(x, t)

2 is called the diffusion. Note
that the drift is synonymous with the instantaneous mean; the diffusion is half the instantaneous variance.

Proof. See [Øks].

For scaled Brownian motion, with e(x, t) = 0 and f(x, t) = σ, we have the forward equation

∂g(x, t)

∂t
=

σ2

2

∂2

∂x2
[g(x, t)] .

For the DCOU process, with e(x, t) = −βx and f(x, t) = σ, we have

∂g(x, t)

∂t
= β

∂

∂x
[xg(x, t)] +

σ2

2

∂2

∂x2
[g(x, t)] .

13.4 Comparison

The generator and forward equation are superficially similar, but distinct. In particular, while they coincide
for the Brownian motion, they differ for the DCOU process.
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